SECOND EDITION

Beginning

Oracle Application
Express 4.2

YOUR TICKET TO EASY AND ROBUST
WEB-APPLICATION DEVELOPMENT USING
ORACLE'S POWERFUL TOOLSET FOR
POWER-USERS, PROGRAMMERS, AND
DATABASE ADMINISTRATORS

Doug Gault, Karen Cannell, Patrick Cimolini,
Martin Giffy D'Souza, and Timothy St. Hilaire

ApPresse

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUtROrS.......cccucsrismmmismnss s ——————————— Xix
About the Technical REVIEWETccuussssssssmsssssssssssssmssssssssssssssssssmsssssssssssssssssnssssnssssnsnsnsnnsas xxi
AcKNOWIEAdgMENTSccuiiiiinmnniissssnnnnmsssssnnmssssssnsnessssssnsessssnsnnsssssnnnnessssnnnnessssnnnnsssssnnnnnsssnnns Xxiii
Chapter 1: An Introduction 10 APEX 4.2.......ccccccmmmmmmnnmmnssssssssssnssmsssssssssssssssssssssssssssnsssnsssnss 1
Chapter 2: A Developer’s OVErVI@Wcccuuesrssssssssssssssssssssssnssssansesssnsessansesssnsssssnnesssnnssssnnss 7
Chapter 3: Identifying the Problem and Designing the Solution...........ccoiusemmmssenssssnnsssnns 29
Chapter 4: SQL WOrkShOpccuuiissmmnmmsssssmmmmssssssnmsssssssssnssssnsnsssssssssnssssssssnsssssnnsssssssnnnnsssns 37
Chapter 5: Applications and Navigationccccnnssemmmmnsssssnmmmsssssmmmsssssmsmsssssnesssssms 55
Chapter 6: Forms and Reports—The BaSiCS......cccummmmmmmmsssnsnmsssssssnmssssssssssssssnssssssssssnssssss 97
Chapter 7: Forms and Reports—Advancedccuseummmssssmnmmssssssnmmssssssnsssssssssssssssnsnssssns 153
Chapter 8: Programmatic Elementscccunemmmnnnemmmnnnsssssmmmssssnmmsssssmmsssssssssssssnnss 203
Chapter 9: SECUNitY......cccuvisemmmmmissnnnnmsssssnsmmssssssnnmssssssnsesssssnnsesssssnnsessssnnnsessssnnnsnsssnnnnenssnn 235
Chapter 10: Application Bundling and Deployment..........cccccunsemmmmmsssssnmmsssssssmsssssssnsnsans 263
Chapter 11: Understanding Websheetscccimnsemmmmmsssennmmmmsssnnmmssssssssssssssssssssssssnsans 283
Chapter 12: A Websheet EXample.........cccusemmssammmsssnsmsssnsssssssssssasssssasssssasssssnsssssanssssansanss 311
Chapter 13: Extended Developer TOOISccccuseermssenmmsssnsmsssssssssssssssasssssansssssnssssansessnnnes 329
Chapter 14: Managing WoOrKSPACEeS.....uuuseesrrssssansssssssansssssssansnsssssansssssssnnsssssssnnsssssssnnnnnss 351
Chapter 15: Team Development..........ccccccimninemmmmmnseenmmmsessmmsessmmmsessms—————— 369
Chapter 16: Dynamic ACHONScccccmrrsmmmmssmnmsssenmmssssmmsssssesssssesssssesssssssssanssssnnssssnnsessannes 397
INA@X . euiiseriinnnennise s s r s s ————————————— 413
v

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1

An Introduction to APEX 4.2

Welcome to the wonderful world of Oracle Application Express (APEX). You're about to learn how to use a tool that
will revolutionize the way you think about and approach writing web-based Oracle systems. It certainly has done so
for the authors.

Prior to the advent of APEX, developing fully interactive web-based systems for data that resided within an Oracle
database almost always meant learning a new and often complex language like Java, .NET, or PHP and then figuring
out how to integrate your chosen language seamlessly with that data. Often this also meant trying to incorporate
business rules that were already coded in the form of PL/SQL program units.

In such situations, it could take months or even years just to become proficient enough with your chosen
language to begin to write a functional system. If you're like many developers, you become frustrated with the fact that
you've spent an inordinate amount of time to do what seems like a relatively easy task.

Fear not! The days of long-winded and complex web development platforms may be behind you.

What Is APEX?

APEX is a 100% browser-based rapid application development (RAD) tool that helps you to create rich interactive
Oracle-based web applications very quickly and with relatively little programming effort.

There are many RAD development tools and platforms on the market. If you're dealing with data that resides in
an Oracle database, a number of things make APEX distinctive and thus more attractive as a development platform.
First and foremost is the fact that APEX is built on and uses as its core languages SQL and PL/SQL. This is a huge
advantage for those of you who have already been working with the Oracle database because it means you can
immediately draw on what you know. Even if you don’t have an Oracle background but are going to be working with
an Oracle database, you need to learn about its particular flavor of SQL and will at some point likely find a need for the
PL/SQL procedural language.

PL/SQL program units become even more beneficial when migrating from an Oracle-based system that already
has a significant amount of business logic coded into stored PL/SQL program units. In this instance, you can almost
immediately take advantage of that logic with very little effort or change to the existing code.

Another great advantage is that APEX is a declarative tool that provides a feature-rich core designed to make your
job easier. Because APEX takes care of many of the underlying functions common to all web-based applications, you
can focus on the logic specific to your application.

A large share of what you need to accomplish can be done using one of the many built-in wizards provided
as part of the APEX Application Builder. The wizards walk you through the process of defining what you want your
application to do and then store that information as metadata. Once a wizard is complete, you can edit and enhance
the functionality or even replace it with your own custom SQL and PL/SQL routines. After you become proficient
with APEX, you might even find yourself bypassing the wizards altogether and generating more complex definitions
directly.

During the course of the book, you'll likely discover you a few other tools at your disposal, but in truth, you could
easily develop a very rich application using nothing but your web browser and what APEX provides for you.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © AN INTRODUCTION TO APEX 4.2

A Brief History of APEX

APEX has been around for quite some time—perhaps even longer than most people know. The first public release of
APEX, or HTML DB as it was called then, came in 2004, but its history reaches back a long way.

Ancient History

APEX has its roots in technology that has been around for quite a while. In fact, parts of the PL/SQL Web Toolkit,
which is used under the covers by APEX to generate the HTML that is sent to the browser, date back to as early as 1994.

At that point in time, you could actually write web applications in PL/SQL by hand, and unfortunately we authors
did. This required not only a thorough knowledge of PL/SQL and HTML but also the patience of a saint and the
determination of a headstrong mule. The end result wasn’t very pretty, and it was definitely not secure by today’s
terms, but it was functional, if somewhat limited.

Not long after, Oracle introduced PL/SQL Server Pages (PSPs). This involved first coding the static HTML and
including special Oracle markup to indicate where dynamic data would go. Once you had the output looking as you
wanted, you then ran it through a program called LOADPSP. This would translate the raw HTML and the special Oracle
markup into a PL/SQL procedure that, again, used the PL/SQL Web Toolkit to emit the HTML including the dynamic
data you requested. At the time, this was a huge leap forward. Doug Gault worked at a company where he built an
entire framework around using PSP technology and deployed it at several clients.

Finally, in 1997, WebDB came on the scene. The true grandfather of what is now called APEX, WebDB was
revolutionary in that it was a 100% web-based tool that allowed developers to design web applications. It was written
entirely in PL/SQL even though Java seemed to be taking over the world. Developers could point WebDB at their
database and generate code that would produce forms, reports, charts, and calendars. There was no session-state
management, and there were no templates; once the code was generated, you couldn’t go back through the tool.

WebDB allowed a large number of companies that wanted to jump on the web-based bandwagon to do so
without spending vast amounts of time and effort retraining their staff. As a tribute to its success, the authors know of
a number of companies that still have WebDB systems running in production environments.

Unfortunately, WebDB'’s days were numbered. Because it generated code (and if you didn’t like the code it
generated, then too bad for you), it had already begun to fade from favor by the time it was absorbed into Oracle’s
Portal product. However, creator Mike Hichwa didn’t forget the glimpse of greatness that WebDB had seen.

More Recent History

Around 1999, Oracle CEO Larry Ellison presented Mike Hichwa (VP of Software Development) with the task of
creating an internal calendaring and scheduling system for Oracle Corp. The original remit was to use WebDB to
generate the initial code and then hand-code all the changes from that point forward. Mike, however, saw this as an
opportunity to completely rewrite WebDB into something that could be far more useful. Thus, with the help of Joel
Kallman and Tom Kyte, Oracle Flows was born.

Based on the success of the internal calendaring and scheduling system, the team was allowed to move forward
toward making Oracle Flows a product. In 2001, using what was then known as Flow Builder, Mike and his team
begin implementing systems for various customers, including one situation where they managed to replace a Java
development project that was going horribly wrong.

By 2003, the team had proven the tool’s power, and they were given permission to release it as a product. HTML
DB 1.5 was released to the public as a no-cost option of Oracle 10gR1.

Since then, various releases have been introduced, each providing improved features and functionality. The
following is a very brief list of the releases and some of the more notable features:

e HTML DB 1.6 (2004) introduced themes, master-detail forms, page groups, page locking, and
some multilingual capabilities.

e HTML DB 2.0 (2005) introduced SQL Workshop, a graphical query builder, a database object
browser, and session-state protection.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 * AN INTRODUCTION TO APEX 4.2

e APEX2.2(2006) introduced packaged applications, the APEX dictionary views, and the access
control wizard.

e APEX3.0(2007) introduced PDF printing with BI Publisher, migration from Microsoft Access,
and page and region caching.

e APEX3.1(2008) introduced interactive reports, the runtime-only installation capability, and
improved security.

e APEX3.2(2009) introduced a migration helper for Oracle Forms-based systems and various
security enhancements.

e APEX4.0(2010) was a huge leap forward, introducing dynamic actions and plug-ins:
declarative ways to introduce server-side logic and extend the core APEX environment,
respectively. Also introduced was the new Team Development module.

e APEX4.1(2011)included a new user-facing data-uploading feature, enhanced error-handling
capabilities, and much-improved support for tabular forms.

APEX 4 and the Future

And so we arrive at the release of APEX 4.2. In our opinion, the changes introduced with APEX 4.0 through APEX 4.2
have truly brought the development environment into the realm of “forces to be reckoned with.” The original focus
of APEX 4.0 was to make development of rich interactive Web 2.0 applications easier by making the process as
declarative as possible. With APEX 4.2, the development team has introduced so many new features—indeed, new
ways to attack problems—that it will be hard not to choose APEX as the preferred development platform for
Oracle-based applications.

APEX’s dynamic actions provide a way for you to define client-side behaviors, such as enabling or disabling fields
or regions declaratively without JavaScript. With some JavaScript knowledge under your belt, you can create complex
dynamic actions that do client-side calculations, AJAX, and more.

An improved charting engine based on the latest version of AnyChart not only provides declarative Flash-based
charts, gauges, maps, and Gantt charts, but also allows you to create HTML5-based charts that run on any platform,
including those that don’t support Adobe Flash. All chart types are interactive and drillable, and several charts can be
combined into a dashboard style interface.

Another exciting feature is the plug-in architecture that provides an extensible framework allowing APEX
community members to build and share their own custom items, regions, processes, and dynamic action types.
Although the ramifications of this might not be immediately apparent, the possibilities of what can and will be
developed using the plug-in architecture are virtually limitless—and that is very good news for all APEX developers.

As a user of the APEX development platform, you no longer have to wait for the APEX team to respond to specific
feature requests. You can take the future of APEX into your own hands and code missing features, actions, and item
types. In fact, the authors see a future where the APEX team uses the plug-in architecture to extend APEX in many
different directions.

We almost can’t overstate the significance of plug-ins. Although APEX 4 is definitely a giant leap forward from
the architecture of APEX 3, the plug-in architecture blows the doors wide open to change from the broad and growing
community of APEX developers.

From version 4.0, APEX now comes with a Team Development feature that eases the management of the
development process by tracking features, to-do lists, bugs, and milestones. A user-feedback mechanism is also
included that allows users to provide inline feedback while using the system. The feature automatically captures the
user’s session-state information so you can see exactly what was going on during their session. You can then take this
information and create a bug or a to-do entry with the simple click of a button.

Websheets provide a fast and direct way for end users to gather and share information without IT intervention.
Armed with only a web browser and access to the Websheets application, end users can define page content, data
grids, and reports and decide who else in the enterprise has access to that data. Websheet page content supports

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © AN INTRODUCTION TO APEX 4.2

standard wiki syntax, and pages can be organized hierarchically. Users can also add annotations to pages and content
in the form of files, notes, and tags.

Probably the single most important new feature in APEX 4.2 is the ability to build applications specifically aimed
at mobile devices. APEX incorporates jQuery Mobile to render content for the vast majority of mobile devices.

A unique attribute of the way the APEX team implemented support for mobile devices is that each application
can now include both desktop- and mobile-based user interfaces.

The APEX team has also created a new mobile-specific theme that includes support for mobile page transitions
and gestures such as swipe, tap, and pinch. Another new theme incorporates responsive design, which automatically
adjusts to the screen dimensions and allows the same user interface to work on desktop, tablet, and mobile devices.

Asyou can see, the APEX core functionality continues to grow with each release. But what you may not know
is that you can help drive the future direction of APEX. By going to the following URL, you can not only request
new features, but also view and vote on features that others have requested. You need an Oracle Technical Network
account, but it’s free and easy to sign up for:

https://apex.oracle.com/pls/apex/f?p=55447:1

To get a view of what the APEX team is committed to providing, you can read the most recent Statement of
Direction (SoD). It may take a short time after a release for this to be updated, but it normally contains an overview of
the main functional areas for the next planned release. You can find the SoD at the following URL:

www.oracle.com/technetwork/developer-tools/apex/application-express/apex-sod-087560.html

What You Need to Get Started

The goal of this book is to get you started using APEX, to launch you in a way that enables you to grow toward mastery
of the product. To begin, you need three things: access to an APEX instance, access to a web browser, and a copy of
SQL Developer.

Access to an APEX Instance

This is definitely a hands-on book, so to work through the examples and exercises you need access to an instance
of APEX 4.2. There are a number of different ways you can access APEX; depending on your level of comfort and
expertise with Oracle, some may be better for you than others. Here is a description of the three most common
scenarios:

e By far the easiest is to sign up for an account on Oracle’s hosted version of APEX at
https://apex.oracle.com. It’s free for nonproduction applications and is a great place to get
started, because you don’t have to worry about installing either the database or APEX.

e Ifyou already have an Oracle database installed locally, you can download and install APEX 4.2
into that instance. Simply go to the Oracle APEX home page at http://otn.oracle.com/apex
and download the latest version of the software.

e Ifyou don’t have an Oracle database already but would like to install one locally, you can
download a free developer’s license version of the database from Oracle Technology Network
(OTN) athttp://otn.oracle.com/database. Both Oracle 10g and 11g run APEX 4.2. Oracle
11g even allows you to install APEX (albeit an earlier version) as an option in the database
install.

Although having a locally accessible instance of the Oracle database gives you more direct access to the data, it's
definitely not necessary to complete the exercises in this book. All code and instructions have been written so that
they can be completed on Oracle’s hosted instance with no special access required.

4

[vww allitebooks.cond

https://apex.oracle.com/pls/apex/f?p=55447:1
http://www.oracle.com/technetwork/developer-tools/apex/application-express/apex-sod-087560.html
https://apex.oracle.com/
http://otn.oracle.com/apex
http://otn.oracle.com/database
http://www.allitebooks.org

CHAPTER 1 * AN INTRODUCTION TO APEX 4.2

Note Oracle provides very good documentation on the installation process for both the database and APEX, so it isn’t
covered in detail here. However, if you’re planning to install APEX on an environment in your organization, you should
coordinate with the database administrator responsible for that instance to ensure that no mishaps occur.

Web Browser

The APEX documentation states that to view or develop APEX applications, you must have a web browser that
supports cookies, JavaScript, HTML 4.0, and CSS 1.0. However, although you can deploy to any browser that support
these things, the list of supported browsers is fairly narrow. Currently, the following browsers are supported: Internet
Explorer 7+, Firefox 14+, Apple’s Safari 5.0+, and Google Chrome 21+.

Without getting into a religious debate about which web browser is the best on the market, but the authors’
preference for development is either Firefox or Chrome due to the number of developer tools and add-ons that can
help you with APEX development. Note that because of the difference in the way each browser interprets HTML and
JavaScript, you must test your application in any and all web browsers that your target audience might use.

SQL Developer

As mentioned before, all the exercises and scripts in the book can be loaded and run directly within the APEX
interface. However, if you have chosen to install or have access to a local instance of the Oracle database, a SQL IDE
will definitely make your life easier.

SQL Developer is a free SQL and PL/SQL IDE provided by Oracle. You can download SQL Developer from the
OTN'’s home page athttp://otn.oracle.com/sqldeveloper.

Using SQL Developer, you can browse database objects, edit row data, develop and test stored PL/SQL program
units, code and test SQL statements, and interactively debug PL/SQL code. SQL Developer also has many direct
integration points with APEX that make reporting in, monitoring, and maintaining APEX instances and applications
easier. This book doesn’t cover those, but it’s definitely worth your time to look into this tool.

Summary

Oracle Application Express has come a long way from its simple beginnings, and the APEX community is poised at the
beginning of a new cycle of growth. APEX 4.2 provides so much possibility and promise that it’s hard not to be excited
about what the future holds. With that spirit, you're ready to begin your journey to discover how APEX can make
development easier and more fun.

[vww allitebooks.cond

http://otn.oracle.com/sqldeveloper
http://www.allitebooks.org

CHAPTER 2

A Developer’s Overview

You're probably anxious to get started, but there are a few concepts that you should understand before you jump into
APEX development headfirst. This chapter introduces the fundamental development architecture of APEX and then
walks you through the different areas of the developer interface.

You delve deeper into the details as you go through the book and put the architecture to work for you, but it will
help tremendously to know how things are structured ahead of time. This chapter is designed to ease you in, but it
isn’t a complete guided tour of every nook and cranny. Be patient; you'll get there.

The Anatomy of a Workspace

APEX was designed from the beginning to be a multi-tenant architecture where many different development
environments (called workspaces) can exist in a single APEX instance. For instance, apex.oracle.com, Oracle’s free
hosted instance, holds over 10,000 active workspaces, each of which is a completely separate environment unable
to see or interact with any of the other workspaces. You can think of this as Software as a Service (SaaS) or a cloud
computing architecture, but basically it means each workspace is distinct and segregated from all others.

In the simple terms, each workspace represents a virtual private container in which developers create and deploy
their APEX applications. The development process takes place in the context of a workspace, so it’s important to know
how a workspace is structured. Figure 2-1 uses database entity-relationship diagram parlance to help explain the
makeup of the objects in a workspace.

Parse as

Figure 2-1. Logical makeup of a workspace

A workspace may have
One to many users: These users may one of three types: Administrator, Developer, or End User.

Zero to many applications: Applications can be added from the list of packaged
applications, imported, or created from scratch.

One to many schemas: Although a workspace must be assigned at least one schema when
it’s created, an Instance Administrator may assign multiple schemas to a workspace.

[vww allitebooks.cond

http://www.apex.oracle.com
http://www.allitebooks.org

CHAPTER 2 * A DEVELOPER'’S OVERVIEW

There may be many applications and many schemas in a workspace, but an application may only parse as one
(and only one) schema and can only be set during development. The following sections delve more deeply to give you
a full understanding of how these concepts relate.

APEX Users

To log in to an APEX workspace, you must have access to a valid APEX user. A number of different user roles are
available that dictate what you can do when you log in. The roles are as follows:

Instance Administrators are special users who manage and maintain the overall APEX
instance. They can set instance level preferences and messages, create and manage
workspaces, monitor space utilization, and perform many other actions related to the
overall APEX installation. Instance Administrators are only able to log in to the special
INTERNAL workspace, which houses the APEX Admin Services application.

Workspace Administrators are responsible for managing the details of a specific workspace
and can manage user accounts related to the workspace, monitor workspace activity, view
log files, override developer locks and settings, and so on. Although it isn’t good practice, the
Workspace Administrator can also act as a Developer, creating and modifying applications.

Developers are the users who create and edit the applications in the workspace. They
have access to the underlying tables in the schema(s) assigned to the workspace and may
create and modify database objects and stored PL/SQL units. Most people writing APEX
applications only need this level of access.

End Users are only able to run applications in a workspace. They don’t have direct access
to any of the underlying database objects, nor do they have access to any of the APEX
development modules. End users can’t log directly into a workspace.

With the exception of the APEX Instance Administrator, APEX users are specific and unique to a workspace,
meaning you can have a user with the same name in multiple workspaces in a single APEX instance but each of these
users is unique. They can have their own passwords and settings and aren’t linked together in any way.

When you're developing, you should get in the habit of logging in as a Developer as opposed to a Workspace
Administrator. Several safeguards are available to help keep developers from stepping on each other in a workspace.
If you log in as a Workspace Administrator, these safeguards are bypassed, and you may accidently interfere with
something someone else is working on. Although this isn’t a problem in a workspace with only one developer, it’s still
good to get into that habit.

Note This book uses the last three types of user. It assumes that APEX has been installed, a workspace has been
created, and you have been given the Workspace Administrator’s login credentials. If you're using the hosted instance at
apex.oracle.com, then the username you were given when you signed up has the credentials of a Workspace
Administrator. If, however, you’re using a local instance, either refer to the APEX documentation or get your Instance
Administrator to help you set up a workspace.

Applications, Pages, Regions, and Items

Although a workspace starts off basically empty, you can have many applications that reside in a workspace. There
is no specific rule, but it’s likely that all the applications in a workspace share something: they might all use the same
underlying database objects, target the same user community, or use the same method for authenticating users.

[vww allitebooks.cond

http://www.apex.oracle.com
http://www.allitebooks.org

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Asyou build an application, you add new pages and build out those pages with regions and items. Figure 2-2
shows the hierarchy of the different types of objects.

al

— > > >

Figure 2-2. General application hierarchy

Applications are basically groups of pages that perform a task (or set of tasks) related to a business function.
During the course of this book you’ll build one application in a single workspace, but it’s important to know that in a
typical development environment, you'll probably be working on many applications across several workspaces.

Pages are the basic building blocks of applications and contain both the user interface components and the
programming logic that processes the user’s input. We cover the rendering of the Ul versus the processing of user
input later, but for now consider a page roughly equivalent to a screen in desktop UI lingo.

Regions are Ul items that serve as content containers. You can have any number of regions on a page, and in
APEX 4, regions can be nested in other regions. This gives you the opportunity to create things like dashboards where
you might nest a data report region and a graph region in a single parent HTML region.

Items are the HTML form elements that are used to present the Ul to the user. These include things such as
buttons, select lists, text fields, check boxes, radio groups, and so on. There are two categories of items: page-level
items and application-level items. The difference is that the latter are defined at the application level and aren’t
rendered directly on the page. You can think of these as global variables. Page-level items are defined on a specific
page and assigned to a region in order to control where and how they display to the user.

There is obviously a lot more to an application than these simple building blocks. But if you understand the basic
hierarchy between these, you’ll have a jumpstart when it comes to building your first pages and a solid foundation
when it’s time to perform the more intricate tasks.

Workspaces, Applications, and Schemas

Although the relationship between workspaces and applications is straightforward, it becomes a bit more complex
when you introduce the relationship with database schemas. Figure 2-3 diagrams this relationship.

l

Figure 2-3. How schemas relate to workspaces and applications

Parse as

CHAPTER 2 * A DEVELOPER’S OVERVIEW

When a workspace is created, it’s linked with at least one, and possibly many, underlying database schemas. This
provides access to database objects such as tables, views, stored PL/SQL program units, and so on.

When an application is created, it’s assigned a single “parse as” schema from the list of schemas associated with
the workspace. A “parse as” schema is the Oracle database user in which all SQL queries and PL/SQL calls run by that
application are executed. So, if your application was defined with a “parse as” schema of DOUG, a query such as

select * from emp
would execute in the database as if it were written
select * from DOUG.emp

Because APEX applications are portable and may not necessarily be run in the same schema they were
developed in, it’s not good practice to hard code the schema names into your SQL or PL/SQL. Instead, APEX provides
areplacement variable (one of many you'll be introduced to throughout the course of this book) for the “parse as”
schema. The #OWNER# replacement variable is substituted for the actual “parse as” schema for the application at
runtime. So the statement

select * from #OWNER#.emp
resolves to
select * from DOUG.emp

In the most common implementations, a workspace is created and associated with a single underlying database
schema. The applications developed in that workspace have their “parse as” schema set to the only schema associated
with the workspace and use the database objects belonging to that schema.

Where a workspace has more than one schema assigned to it, things can become a little more complex. You
might be tempted to think that if you associate three schemas with a workspace, any application in that workspace
can automatically access the data in all three schemas. However, you would be mistaken.

Because an application is assigned one—and only one—“parse as” schema, all SQL statements and PL/SQL
calls are executed as that schema. Although the workspace may be associated with multiple schemas, the application
itself isn’t. If you want to access data in a schema other than the application’s “parse as” schema, you must make sure
the correct database-level grants are in place, just as you would when using any other Oracle tool or development
environment.

Take the example shown in Figure 2-4, where two tables you wish to join as part of a SQL statement are owned by
separate schemas.

DEPTNO EMPNO
DEPT_NAME ENAME
LOCATION DEPTNO

Figure 2-4. Tables joined across schemas

If your “parse as” schema is DOUG, then you must be specifically granted privileges on the objects in the JOEY
schema to be able to access it. To do this, you sign on to the database as JOEY (or as a DBA) and grant the appropriate
database privileges on JOEY.DEPT to DOUC.

10

CHAPTER 2 * A DEVELOPER’S OVERVIEW

In this example, if you needed to join the two tables together in a select statement, granting the SELECT privilege
on JOEY.DEPT to DOUG would suffice. Then you could write your select statement as follows:

select e.empno,
e.ename,
d.dept_name,
d.location
from #OWNER#.emp e,
JOEY.dept d
where e.deptno = d.deptno

The #OWNER# substitution variable would be resolved to your “parse as” schema (DOUG), and the join would work
correctly as long as the correct privileges were in place.

Note Because the grants that allow the select from the JOEY schema are put in place at the database level, it isn’t
necessary to associate the JOEY schema to your workspace. You only need to associate a schema to a workspace if you'll
be using it as the “parse as” schema for an application in that workspace or need to access the schema objects directly
from within the SQL Workshop.

A Final Word on Workspaces

Asyou have learned, an APEX instance can have many workspaces. But how many workspaces should there be? The
answer isn't straightforward.

Unless you're in a very small organization with very few apps, you probably shouldn’t have only one workspace.
On the other hand, you probably shouldn’t create a new workspace for every new application you code, either.

There are a couple schools of thoughts on this, but we tend to think in terms of application suites. If a number of
applications are performing similar tasks against the same underlying data sets and are aimed at the same target set of
users, then they would probably do well in the same workspace.

The key is to use your judgment and try to keep things easy to develop and maintain. There is nothing worse than
logging in to a workspace to find you have to page through tens or even hundreds of apps to find the one you want to
work on.

A Tour of the APEX Modules

Now that you have a little background on how things are logically architected, it’s time to get a closer look at the APEX
development environment. This section introduces you to the different sections of the APEX environment and gives
you an overview of how things are laid out.

Figure 2-5 shows a hierarchical layout of the APEX menu structure. Later, you look at each of the main sections
and glimpse what’s under the covers; this is just an introductory tour. You get a much deeper look as we work our way
through the development processes.

11

CHAPTER 2 A DEVELOPER’S OVERVIEW

| | | |
Applications Object Browser Features Manage Services
| I I |
Crelate SQL Commands Milestones M:::QGeMU;esrs
I I |
Import SQL Scripts To Dos Monitor Activity
| I | |
Export Utilities Bugs Dashboards
| | | |
Repository RESTful Services Feedback About
| |
Migrate Links
I
News
|
Settings
|
Release Summary
|
Utilities

Figure 2-5. APEX 4.2 hierarchical menu structure

Asyou can see, the development environment is broken into four main sections:

The Application Builder is where you create and modify applications and pages, and it’s
where you'll probably spend most of your time.

The SQL Workshop is where you deal directly with the underlying database objects and
their related data. Think of it as a web-based version of SQL*PLUS with some GUI goodness

thrown in to make things easier.

12

CHAPTER 2 © A DEVELOPER’S OVERVIEW
Team Development is the section that lets you enter and track information related to the
development of APEX applications.

Administration is where you can manage the details of your workspace, its defaults, users,
groups, and so on. Be aware that a Workspace Administrator has more options available to
them than a standard developer.

The Home Page

Once you log in to your workspace, you're presented with the workspace Home page, as shown in Figure 2-6. The
Home page is your gateway to the rest of the development environment and provides some high-level information
about what'’s going on in the workspace.

Application Express

N Appiication Builder v | SOL Workshop v Team Development v Administration w

7]
I — SQL» -
3 > :
Appl dor E tkshop Teamn De
News
Team Development -3
Top Applications Top Users
st
3
Tod
Show: Al
Fsdearse All Releases
Available Updates *
Fage events: 1 hours (Edt g Tenstnma | System Is up-to-date
Accessibility Mode
Standard

Figure 2-6. APEX development Home screen

Along the very top are the Oracle logo and the Application Express banner. To the right of that is the Navigation
Bar that contains the workspace name and a Logout link enabling you to log out of this workspace and navigate
back to the main APEX login page. Just below the Navigation Bar is the main menu bar that is available to you
throughout the developer interface. It gives direct access to many of the sections you need to get to quickly while
you're developing applications. It’s worth noting that each section of the menu bar is broken down into two pieces.
For instance, if you click directly on the Application Builder item, you're immediately taken to the Application Builder
home page. However, if you click the small downward-pointing triangle just to the right, you're presented with a more
detailed drop-down menu that lets you choose your destination a bit more granularly, as in Figure 2-7.

13

CHAPTER 2 * A DEVELOPER'’S OVERVIEW

Application Builder » =o'

Applications
- Database Applications
- Webshest Applications
- Packaged Applications
Create
Impaort
| Export -
A Repository

Migrate

Figure 2-7. Using the drop-down menus on the menu bar

At the far right of the menu bar is a search box that allows you to perform context-sensitive searches. The context
of the search depends on where you are in the Application Builder. For instance, if you're on the workspace home
page, your search is across the entire workspace. However, if you're in the Application Builder or the Administration
section, the search is limited contextually to those specific areas.

Beneath the main menu bar is the breadcrumb region. This not only gives you a visual clue of where you are
in the hierarchy of the workspace, but each breadcrumb is also a quick link that takes you back to that specific spot
in the hierarchy. You'll create breadcrumbs in your own application that perform a very similar job. You don’t see
breadcrumb entries when you're on the Home page.

Last, to the far right of the breadcrumbs, is the Help link, which appears as a stylized question mark. This
pops open a new window that displays the documentation web site containing searchable help for APEX. If, for
some reason, you don’t have access to external web sites, you may want to download the PDF versions of the
documentation to have on hand.

The rest of the page is dedicated to either giving you a quick link to the four main sections or providing you with
information about what'’s going on in the workspace. The News region, shown in Figure 2-8, allows the developers in
a workspace to enter information they want others in the workspace to see. If more than one news item is active, this
region scrolls through the news items, wrapping back around to the first item when it reaches the end of the list.

News + >

Welcome to BEGINNING ORACLE APEX 4.2 -- Admin, 13 seconds ago

Figure 2-8. Home page News scroller

14

CHAPTER 2 * A DEVELOPER’S OVERVIEW

The two regions at the bottom of the Home page show an overview of the activity in the workspace. The regions,
from left to right, show the Top Applications and the Top Users in the workspace. In a new workspace, there probably
won'’t be anything in these regions, but as you work your way through the book, you'll see that start to change.

Notice that most of the main pages for each section of the development environment adhere to this dashboard-style
home page interface, the notable exception being the Application Builder. Let’s look at that section first.

Application Builder

The Application Builder is the core of the APEX application development environment. Whereas you'll use the SQL
Workshop to manipulate the underlying database objects, you'll use the Application Builder to do most of the real
work when it comes to coding, testing, and debugging your applications.

The Application Builder Home Page

Clicking the Application Builder menu option takes you to the Application Builder home page. Like most of the home

pages, it’s laid out with the menu bar across the top, and regions that hold tasks and quick links down the right side.
The main difference is the Builder home page doesn’t house any dashboard-style summaries. Instead, this is

where you see a list of the different applications contained in your workspace. (Figure 2-9 provides an example.)

It’s possible, depending on your APEX instance settings, that you might see some sample applications installed by

the Workspace Administrator, but don’t be alarmed if you don’t see any applications at all.

Application Express

Home EEGRRISISAREREIEEE SOL Workshop v Team [

Application Builder

Al Applications [t

tions | Webshee 5
Q- Go E = = | | Acticns v Reset | Import

Sample Master Detail
Run | | Edit

Packaged Applications About

Tasks

Recent

Migraticns

Figure 2-9. The Application Builder home page

15

CHAPTER 2 * A DEVELOPER'’S OVERVIEW

Notice the set of tabs above the application list. This tab set provides a high-level filter of which applications you
see from all those in your workspace:

All Applications shows all application types (database and websheet).

Database Applications shows only those applications that are built on top of a database
schema. These are considered standard APEX applications.

Websheet Applications shows only those applications that are websheet-style applications.
These are new to APEX 4, and we'll talk more about them in Chapters 11 and 12.

Packaged Applications provides a set of ready-to-use applications and examples that can be
installed in the current workspace.

Figure 2-9 shows one application in the workspace named Sample Master Detail. However, there isn’t much
information about it other than its name, the Application ID (107), and the fact that it's a packaged application. This is
where you begin to see the beauty of what APEX can do, not only in the developer UI, but also in your applications.

The list of applications you see is actually a style of report called an interactive report (IR). IRs allow you to
customize how reports and their contents are displayed. IRs are used throughout the APEX development interface and
can also be used when creating your own applications. They're extremely powerful tools, and you’ll use them a lot.

On the right side of the page are four regions that show About information, Application Builder-related tasks,
recently edited applications, and a link to the Application Migration Wizard. You deal more with these later; for now,
you want to drill in to see the details of an application.

The Application Home Page

Clicking any one of the applications listed drills into the Application home page, as shown in Figure 2-10. This page is
very similar to the Application Builder home page, but it shows all the pages in a specific application. Again, it uses an
IR, so you can customize the way you see this data.

16

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Applicasion Builder v shap v | Team Development v Administration v

* tion Buskder - Application 107 U - R« N - B A - |

Application 107 - Sample Master Dotail Edit Aaplication Properies About >

I ! (N defing how the page
M N processed.
i that arenat specific 1o a
'Q are called shared
b rits. Shared Components
Run Applicatio Supporting Objects Utilitiess Export | Import Inchude authentication,
authorization, user interface
templates, and tabs.
Q- Go | | 22 E:: Acticns v Create Page

Tasks
Page(a) Name Updated Updated By Page Type User Interface Group Lock

]
E

Glooal Page Desiaop

Recently Edited Pages

¥y ¥ r e rFe P
L+ N - DO~ TR A~ AN~ O~ O~ I~ I~ I~ |

Figure 2-10. The Application home page

Again, notice the way the page is structured, with page-related tasks and recently edited pages presented along
the right side of the page. This layout will become a familiar theme as you navigate through the interface.

From here, you can click any of the listed pages to edit that page. You can also run, export, and import the
application, edit the supporting objects or shared components, and access the application-related utilities.

We'll wait until you get into the depths of writing an application to go any further in the Application Builder, but
this gives you a flavor of what to expect as you move forward.

SQL Workshop

The SQL Workshop is a suite of tools that provides developers the ability to view and manage database objects in the
underlying schema(s) assigned to the workspace. The SQL Workshop home page shown in Figure 2-11 lets you access
each of the underlying tools and gives some high-level information about recently created objects and commands
that that have been run.

17

CHAPTER 2 * A DEVELOPER'’S OVERVIEW

Home Applicasion Builder v [ESIRUISISURSEVEN Toam Development v Administration v

#A SOLWorkshop

Object Browser S0L Commands SOL Sceipts Lhilities RESTHul Services thi Create button,

Recent SQL Commands

Preference
4 minutes ago

4 minutes ago APRESS :

Figure 2-11. The SQL Workshop home page

Because there may be more than one schema assigned to the workspace, a schema-selection dialog at right
allows you to select and set the default schema for all the tools. You may change the schema you're working in within
each of the tools as well.

The main tools available as part of the SQL Workshop are displayed in the toolbar at the top of the page. Each of
the individual tools deserves its own introduction, so let’s spend some time now looking at what they are and what
they can achieve. You'll use this area of APEX more heavily when you create the database objects for your application.

The Object Browser

If you've been working with databases for any length of time, you’ve probably used one of the more popular GUI
tools that allow you to browse and manage database objects in a schema. The APEX Object Browser is a very similar
tool presented through your web browser. Figure 2-12 shows the Object Browser being used to examine the table

EBA DEMO_MD_DEPT.

18

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 * A DEVELOPER’S OVERVIEW

s Object Browser APESS @ BRSNS

Tables

; @

EBA_DEMO_MD_DEPT Create v

APEXS_AGL Table Data Indexes Model Constraints Grants Statistics Ul Defaults Triggers Dependencies SOL
APEXS WS _FILES

APEXS_WS_HISTORY

APEXS_ WS_UINKS

APEXS_WS_NOTES Column Name Data Type Mullable Default Primary Key

APEXS WS ROWS

APEXS_ WS_TAGS

APEXS WS WEBPG SECTIONS

APEXS WS WEBPG_SECTION_HESTORY
EBA DEMO MO DEFT
EBA_DEMO_MD_EMP

DEPTH!

Figure 2-12. The APEX Object Browser

The name Object Browser is somewhat of a misnomer because the tool can be used not only to browse the objects
in the underlying schema(s) but also to create new objects, browse and edit data, delete objects, and edit object
definitions. Although there are some limitations on the types of objects it can manipulate, it’s powerful enough to do
most of the daily tasks that an application developer needs to tackle.

You choose the object type you want to work with by selecting it from the drop-down list in the upper-left corner.
You can search the selected object type by entering a text string in the search box just below it and clicking the refresh
icon to the right. Clicking the name of an object displays its properties along with links to drill into more details.

Although the interface for the Object Browser is pretty intuitive, there are some interesting things to note. In
the upper-right corner is a drop-down list that allows you to set the current schema. The list contains all schemas
currently assigned to the workspace. You can switch between them simply by choosing a new one from the list.

Also, to the right of the drop-down list is a set of quick link icons that takes you directly to the other tools in the
SQL Workshop.

The SQL Commands Interface

The SQL Commands interface allows you to interact with the underlying schema(s) using standard SQL commands or
PL/SQL as you would in any other GUI tool or SQL*Plus. The difference is that you can save the statements for use at a
later time. Figure 2-13 shows a simple SQL statement as executed in the SQL Commands interface.

19

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Application Express

re SGL Commands waik) B E RS NS

Results Explain Describe Saved SOL History

10 ACCOUNTING NEW YORK
70 RESEARCH DALLAS
30 SALES CHICAGOD
40 OPERATIONS BOSTON

4 rows retumaed in 0.0 seconds

Figure 2-13. The SQL Commands interface

Although its core function is quite straightforward, the SQL Commands interface is more robust than it first
appears. Beyond the ability to save and retrieve SQL and PL/SQL, it can also run explain plans on statements and
allows you to view your statement history. Therefore, if you ran a script or statement that was particularly useful, but
you forgot to save it, you still have the potential to retrieve it from the history buffer.

The SQL Commands interface also integrates with the Query Builder (described later), allowing you to load and
manipulate saved statements built in the Query Builder.

Note By default, all SQL statements executed via the SQL Commands interface are automatically committed. To
override this setting and enter into transactional mode, uncheck the Autocommit check box in the toolbar. Once this is
done, you can manually commit and roll back your SQL statement.

There is no way to turn off Autocommit permanently, so you need to remember to do this any time you want to enter
transactional mode.

SQL Scripts Interface

The SQL Scripts interface allows you to manage and run sets of SQL commands saved into script files. A single script
can contain one or more SQL statements or PL/SQL blocks. SQL scripts that are coded outside of APEX can be loaded
into the SQL script repository and edited or run from there. You may also create SQL scripts from scratch using the
SQL Scripts interface. Figure 2-14 shows the main SQL Scripts interface page.

20

Application Express

CHAPTER 2 * A DEVELOPER’S OVERVIEW

L Workshop | SOL Seripts

Edit Owner Name Updated By Updated » Bytes Results

@ ADMIN stancmd table loadsgl ; 0

Figure 2-14. The main SQL Scripts interface page

BEER=ENGA

Tasks
Delete Checked Upload »

In this example, one script, called standard_table_load.sql, is loaded into the script repository. By clicking the
Edit icon, you can edit the contents of the script, as shown in Figure 2-15. APEX 4 provides syntax highlighting in the
Script Editor. The editor also has a Find and Replace function as well as undo and redo.

Application Express

Home = Applicato SER SOL Werkshop w
Y L Workshor > Script Editor
Script Name | standard_table_load.sql

Find & Replace Undo Redo

CASCADE EI

)
CASCADE

Figure 2-15. The SQL Script Editor

Cancel Download Delete Save m

You can also download the script to a local file so you can edit it in your favorite local text editor. When you're
done, simply cut and paste it back into the editor or upload it as a new script file.

21

CHAPTER 2 * A DEVELOPER'’S OVERVIEW

Note When you upload a script file to the repository, the name of the script must be unique. You can’t overwrite an
existing script file of the same name with a new version without first deleting the script from the script repository.

Once a script is ready to run, you can click the Run icon in the list (or the Run button in the editor), and you're
stepped through the Run Script wizard. This allows you to choose whether you want to run the script immediately
or run it in batch mode. If you choose batch mode, your script is entered into a queue where it is executed when it
reaches the front of the queue.

Either way, you're taken to the Manage Script Results page of the SQL Scripts interface, as shown in Figure 2-16.
This screen allows you to see the status and certain high-level details of the script’s execution. In the case of scripts
that have been submitted in batch mode, you can also see the status of the script in the queue.

* > Manage Script Results

Delete Checked

Q- Ga Actions +

Script Run By Started(w Elapsed Status Statements Bytes View Results

Figure 2-16. The Manage Script Results page

Clicking the View Results icon shows you the final results of running the script. In Figure 2-17, you can see that
the script had errors, the details of which are displayed in the body of the report. If the script were successful, no
errors would be shown, and the statement results at the bottom of the page would show zero errors.

22

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Home Applicasion Builder v JRESIRNVELELLRVE Team Development v | Administration v
Fs LS Results
Script: standard_table loadsgl Status: Complete Edit Script
Ve Detail (s) Summary Rows 15 : Go
T
1 001 CREATE TABLE "EBA_DEMO_MD_DEPT" { "DEPTNC" NUMBER, ORA-00955: name is alreadty used by an existing chiect
2 000 CREATE TABLE "EBA_DEMO_MD_EMP® ("EMPNO" NUMBER NOT ORA-00955: name is alnsady used by an dsting cbject
3 005 ALTER TABLE "EBA DEMO MD EMP ADDFOREIGN KEY "MGR") ORA-02275: suich & referential constraint already exists in the table
4 001 ALTER TABLE "EBA_DEMO_MD_EMP* ADDFOREIGN KEY "DEPTNCY) ORA-02275: suich & referential constraint alneady xists in the table

rowls) 1 - dof 4

Figure 2-17. An example of errors from the SQL Scripts interface

Note Although both the SQL Commands and SQL Scripts interfaces can accept and run standard SQL statements,
the extended commands of SQL*PLUS aren’t valid in the tools.

The SQL Commands interface throws an error when it encounters any SQL*PLUS-specific commands. However, the SQL
Scripts interface warns the user of the existence of SQL*PLUS commands in a script being run and then ignores them if
the user chooses to continue. Because of this, the SQL Commands and SQL Scripts interfaces can’t perform many of the
functions of extended SQL*Plus scripts.

The Query Builder

Although in 4.2 the Query Builder has been relegated to the Utilities page, it still appears as one of the icons in the
quick link bar at upper right on the page and merits discussion specifically because it’s helpful to beginners. The
Query Builder is a utility that allows you to build SQL select statements using a more graphical interface, and
although it’s not quite drag and drop, it’s fairly intuitive.

When you first enter the Query Builder, you're presented with a screen that lists all the tables and views available
in the currently active schema. Figure 2-18 shows the initial Query Builder screen.

23

CHAPTER 2 * A DEVELOPER'’S OVERVIEW

Application Express

LR S0 Workshoo w [RIE

L Warksnog Query Builder BEER SN

£ S m

DEMO_CONSTRANT_LOOKUP
DEMO_CUSTOMERS
DEMO_ORDERS
DEMO_ORDER_ITEMS
DEMO._PRODUCT_INFO
DEMO_STATES

4 Conditions SOL Results SavedSOL

Figure 2-18. The initial Query Builder screen

From here you can begin to build your query. To include a table in your select statement, simply click it in the
list to the left. A representation of the table is placed in the blank region of the screen above the Conditions region.
You may add as many tables as you like to your query and may even include the same table more than once by
clicking it again. Notice that if you include more than one instance of the same table, the new instance is suffixed with
a sequence number differentiating it from the original table.

Figure 2-19 shows an example graphical representation for the DEMO_ORDERS table and outlines the different
interactive features.

24

CHAPTER 2 * A DEVELOPER’S OVERVIEW

Table Actions

Show/Hide Columns
h Remove
I=:] =X
ORDER_ID 789
CUSTOMER_ID 789
ORDER_TOTAL 789

ORDER_TIMESTAMP | (&}
USER_ID 789

L Select Column for join
Data Type Indicator

Column Name

Column Selector

Figure 2-19. The DEMO_ORDERS table as represented in the Query Builder

Taken from top to bottom as they appear in Figure 2-19, these action areas are as follows:
Table Actions displays a dialog allowing you to do one of several things:
e Check All allows you to quickly select or deselect all columns of the object for inclusion in
the query being built.
e Add Parent allows you to select and add a parent table, as defined by foreign key
relationships, to the Query Builder.

e Add Child allows you to select and add a child table, as defined by foreign key
relationships, to the Query Builder.

Show/Hide Columns expands and collapses the object so the column definitions are shown
or hidden.

Remove deletes the table and any of its related clauses from the select statement.

Select Column for Join is activated by clicking the blank square next to a column name.
Doing so darkens the square and puts the Query Builder into Table Link mode. Then you
can click another blank square, either in another table or in the same table, and the Query
Builder inserts an EQUALITY where clause between the two columns in the SQL statement.

Data Type Indicator indicates the data type of the column, such as number, character,
date, and so on.

Column Name indicates the column name as defined in the table description.

Column Selector allows you to individually select or deselect columns to be included in the
SQL statement for processing. This may also include columns that you want to use in the
where clause but not display in the output of the SQL statement. The basic rule is that you
need to select all the columns you want to display, but you don’t necessarily have to display
all the columns you select.

25

CHAPTER 2 * A DEVELOPER'’S OVERVIEW

Asyou add and join tables and select columns to operate on, the region at the bottom of the screen begins to
change. This region is subdivided into several tabs:

The Conditions tab shows one row for each column selected in the area above and allows
you to further define its attributes. (More on this feature in just a moment.)

The SQL tab displays the SQL statement as the wizard builds it. Although it’s not directly
editable, you can easily highlight the statement and cut it to the clipboard from here.

The Results tab shows the results of running the SQL statement and allows you to download
the resulting data in CSV format.

The Saved SQL tab allows you to save, recall, and manage statements that have been built
with the Query Builder. There are also filters that let you search and limit which saved
queries display.

All but the Conditions tab are self explanatory, so lets go over this one in a little more detail. Figure 2-20 shows an
example three-table join with five columns selected to operate on.

¥ cusTOMER IO iy ORDER_ID "
wERID R
V CUST_FIRST_NAM TO 3
_FIRGT_NAVE A CUSTOMER_ID ' S el
V| CUST_LAST_NAVE A + ORDER_TOTAL iy
msgwoRD A
CUST_STREET_ADDRESS1 A capEr_TavEsTave (@
cREATED_oM (0
CUST_STREET_ADDRESSZ A UsSER_ID *
QUOTA oy
cusT_CITY A
= pRODUCTE A
CUST_STATE
e A eowes_on (@
A
ADVR_UsER A
Conditions
A ¥ USER NAME USER_NAME DEMO_USERS Asc il v’ x
4 Y CUSTOMER_ID CUSTOMER_ID DEMO_CUSTOMERS_2 Asc 5 < 4 4
4 ¥ CUST_FIRST_NAME CUST_FIRST_NAME DEMO_CUSTOMERS_2 Asc % 2 o J *
& Y CUST_LAST_NAME CUST_LAST_NAME DEMO_CUSTOMERS_2 A § ¥ ¥
4 ¥ ORDER_TOTAL SUM_OF_ORDERS DEMO_ORDERS <500 A & 4 SuUM ® ®

Figure 2-20. An example three-table join

In this example, the following modifications have been applied to the query:
¢ Changed the alias of the ORDER_TOTAL column to SUM_OF_ORDERS
e Limited the result set to only those records where ORDER_TOTAL is less than 500
e Sorted the records returned by CUST_LAST_NAME, CUST_FIRST_NAME ascending
e Performed a SUM function on the ORDER_TOTAL column
e Grouped the query by USER_NAME, CUSTOMER _ID, CUST_FIRST_NAME, CUST_LAST_ NAME

Based on the column selections and the restrictions and changes introduced in the Conditions tab, the SQL
statement (as it appears in the SQL tab) looks like this:

select "DEMO_USERS"."USER_NAME" as "USER_NAME",
"DEMO_CUSTOMERS_2"."CUSTOMER_ID" as "CUSTOMER_ID",

26

CHAPTER 2 * A DEVELOPER’S OVERVIEW

"DEMO_CUSTOMERS 2"."CUST FIRST NAME" as "CUST FIRST NAME",
"DEMO_CUSTOMERS 2"."CUST LAST NAME" as "CUST_LAST NAME",
sum(DEMO_ORDERS.ORDER_TOTAL) as "SUM_OF_ORDERS"
from "DEMO_CUSTOMERS" "DEMO_CUSTOMERS 2",
"DEMO_USERS" "DEMO_USERS",
"DEMO_ORDERS" "DEMO_ORDERS"
where "DEMO_USERS"."USER_ID"="DEMO ORDERS"."USER_ID"
and "DEMO_CUSTOMERS 2"."CUSTOMER_ID"="DEMO_ ORDERS"."CUSTOMER_ ID"
and "DEMO_ORDERS"."ORDER_TOTAL" <500
group by DEMO_USERS.USER_NAME, DEMO_CUSTOMERS 2.CUSTOMER ID,«
DEMO_CUSTOMERS_2.CUST_FIRST NAME, DEMO_CUSTOMERS_2.CUST LAST NAME

Although the Query Builder is very useful and allows you to put together a basic query fairly quickly using a
simple GU], it does have its limitations, such as nested subqueries and complex unions. We use the Query Builder to
get the skeleton of a query defined; we then take the query to the SQL Commands window or a SQL IDE and fine-tune
it from there.

As a final note, it's worth mentioning that the Query Builder is linked to from several places in APEX, so any time
you're prompted for a SQL statement (for example, as the basis for a report) you can open the Query Builder in a
pop-up window and return the query to the calling form.

Utilities
The SQL Workshop Utilities section gives you access to tools and reports that help you view and manage information
about the underlying database objects and their data. This section introduces each tool set and its main purpose.
However, the majority of these tools are very straightforward, so in most cases the deep details are left for you to
explore on your own.

The Utilities home page (as shown in Figure 2-21) presents a quick icon-based menu you can use to reach the
individual utility areas. Clicking any one of these icons takes you directly to the tools page for that category.

splication Express

Homa Appication Buslde S0L Waorkshop v Toam Devolopment v Adminstraton v
A) SoLwotrop) Uses mORsH6@
About
fo— — | A i
[€] A 2 k. 1 ’ ‘:
\ 3 1 -
. —— User Ietertace Deloukts
. i ‘) Create Object

Figure 2-21. The SQL Workshop Utilities home page

27

CHAPTER 2 * A DEVELOPER'’S OVERVIEW

You've already seen the Query Builder, which gives users the ability to visually create queries.

The Data Workshop provides tools that import and export data in many different formats including comma or tab
separated, XML, or spreadsheet data. These tools also help you manage files that you have loaded into either the text
or spreadsheet repository.

The Generate DDL wizard allows you to choose a schema associated with the workspace and generates a script
that can be used to re-create some or all of the objects with that schema based on your selection. The generated script
doesn’t include any insert statements for the data that resides in the database objects, but it’s a good way to easily re-
create the underlying objects an application might use.

The Methods on Tables wizard generates an Application Programming Interface (API) based on a specific table or
set of tables. For each table selected (up to ten named tables), the generated package contains a procedure for each of
the following actions: Insert, Update, Delete, and Select. The benefit of using table APIs instead of accessing the table
directly is that any required validation logic can be included once, in the API, and accessed from various alternate
interfaces including APEX.

User Interface Defaults allow you to define default display attributes to APEX regions and items. The utility lets
you manage these Ul defaults at two different levels: Table Dictionary and Attribute Dictionary. UI Defaults are
discussed in more detail later.

About Database and Database Monitor are special utilities that require the user running them to have access
to a database login that has been granted the DBA role. The Database Monitor utilities allow the privileged user to
view Sessions, Systems Statistics, Top SQL, and Long Operations reports. The About Database report shows detailed
information about the database instance and the APEX environment. Depending on the settings the Instance
Administrator has chosen, these two utilities may not appear in the list, because they can be turned off.

The Schema Comparison utility allows you to compare the objects in two separate schemas and create a difference
report. You may choose to compare only certain attributes or all attributes of the objects in the selected schemas. The
limitation here is that both schemas must be assigned to the workspace in order for the comparison to take place.

The Object Reports are actually a set of utilities that let you get detailed information about the different types of
objects that live in the “parse as” schema(s) assigned to the workspace. Although most of the reports have to do with
tables, others deal with PL/SQL objects, invalid objects, grants and permissions, and so on. This is a good place to find
details of the objects in your working schema.

When an object is dropped, Oracle doesn’t immediately remove the space associated with the table, but instead
renames the table and places it and its associated storage in the Recycle Bin. The Recycle Bin utility allows you to view
and potentially recover objects that have been dropped from the schemas associated with a workspace. You may also
purge the Recycle Bin, allowing the space to be reclaimed by the Oracle database for use somewhere else.

Administration and Team Development

The last two functional areas of the UI, Administration and Team Development, are complex enough to truly deserve
their own chapters. Therefore, we refer you to the chapters that cover these areas in depth. Chapter 10 covers
deploying applications, Chapter 14 is about managing workspaces, and Chapter 15 goes over Team Development.
You dip into administrative tasks throughout this book, so if you want to have a full understanding of
administration before you start, you should take a detour and read these chapters now to get a good foundation.
However, if you're prepared to learn on the fly, go to the next chapter, where you start the real programming.

Summary

The architecture of APEX may seem a bit daunting at first, but once you actually start working with it, things will begin
to fall into place and you'll understand more and more about how everything fits together. If you take away only one
thing from this chapter, let it be that a workspace is essentially your development sandbox. Everything you do happens
in the context of a workspace. Everything else—from a development standpoint—is much like any other development
environment. Are you building a new application? Then it needs to be created in a workspace. Do you need access to a
schema to build that app? Then it needs to be assigned to your workspace. You get the picture. Now, on to the fun!

28

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 3

|dentifying the Problem
and Designing the Solution

Every computer system is (or at least should be) the result of solving some type of problem. Although “Hello World”
apps are great, we firmly believe that the best way to learn any technology is to apply it to a real problem and see how
things actually work.

We adhere to that principle throughout this book. This chapter discusses a very common problem in most
organizations that can be solved technically. You also look at some of the detailed things you need to consider when
designing web-based systems in general and APEX specifically.

Identifying System Requirements

Almost every company, no matter the size, will at some point need to implement some sort of help desk. Whether it’s
an internal one to track employee questions and problems or an external one to track client issues with commercial
software or hardware, the basics of a help-desk system are fairly standard.

Most help-desk systems are driven by the notion of a trouble ticket or ticket. This term is a leftover from the
days before computers: most problems were reported over the phone, and troubleshooters used a physical paper
ticket to log a call. The information contained on that paper ticket included a description of the problem, the person
having the problem, when the problem was logged, and so on. Then, throughout the process of troubleshooting and,
hopefully, solving the problem, the engineers wrote down each step of the process and included any documentation
of the problem they gathered along the way. Today, it would be very surprising to see a help-desk system that wasn’t
computerized, even if it’s only a spreadsheet of issues with notes and statuses.

In this chapter, you attack the help-desk system with APEX. Before you dive in, you need to clearly understand
the problems you're trying to solve. If nothing else, you need to review the current system.

Never a Clean Slate

Almost no computer system written today starts from scratch. There is almost always something in place, even if it’s
just some loose guidelines or ideas.

For this example, let’s say your company has a very basic system in place, but it’s no longer meeting the needs
of your growing user community. Your goal is to create a new system that will make the logging of issues and their
solutions much easier for everyone involved; however, to do that, you must understand the needs of the users and the
functionality of the system that is in place now.

29

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

A Broken System

In general, the users of help-desk systems can be categorized into two groups: people who log problems (end users)
and people who help solve the problems (technicians). Depending on which user community you fall into, it’s likely
you have different needs, but overall, the system should help the end users and the technicians communicate about
the problem or issue.

The first step is to understand how your help desk is being managed today and why it’s not working. Speaking
to both the technicians and the end users can provide a huge amount of information, but the challenge is that this
information usually comes in the form of complaints about the current system.

Quizzing the end users reveals that their main complaint is that they never know the status of the problems
they've logged. They can go days, sometimes weeks, without communication from the technicians, and in the eyes of
the users, no communication means no one is working on their problems. Another user complaint is that the
help-desk technicians often don’t know how to contact them to ask further questions or communicate progress.

On the other end of the issue, the technicians are overloaded. Ticket information is kept in an Excel spreadsheet.
Originally, the help desk was only one person, but now there are several technicians working independently. While
performing their daily duties, each needs to update the spreadsheet with information regarding the tickets assigned to
them. The increasing number of people accessing a single spreadsheet causes problems, because only one person can
open and update the spreadsheet at any given time. The technicians are also tired of constantly being called by users
wanting an update on the status of their issues.

It’s obvious that the system is broken. Neither the users nor the technicians are happy about the situation. It’s
your job to take the information you've gleaned from these conversations and design something that will address the
needs of both user communities.

How Do You Fix Things?

With the information you've gathered so far, you can now define some loose requirements and break them down
by user type so you can have a much clearer understanding of what each community needs. Then, from those
requirements, you can begin to think about the database design that you'll need to create in support of them.

Defining the Requirements

You can look at requirements from two perspectives. End users have one set of requirements and technicians another.
Some requirements overlap between the two groups. Others are unique to one group or the other.
End users should be able to

e Create a new ticket outlining their problem.
e See the status and progress of tickets.
Technicians should be able to
e Easily identify and view new tickets.
e Easily identify which tickets are directly assigned to them.
e Search existing tickets.
e Create new tickets on behalf of an end user.
e Assign tickets to other technicians.
e Add details (comments, information, and attachments) to tickets.

e Update the status of a ticket.

30

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

Although you could go a lot further, these requirements form the basis of a pretty complete help-desk system. You
can always add functionality to it later when you have a better understanding of what else the users and the company
might need.

Extrapolating to a Database Design

Having stated the requirements, you can begin to extrapolate the database objects you need to create to store the data.
If you're new to database design, here’s a quick trick to help identify the entities for which you need to build tables:

go back through your requirements and look for concrete nouns that represent the highest-level objects you need to
track. As you find these nouns, try to identify if they’re actually at the highest level or if they're merely attributes of
something bigger.

If you follow the described process with your brief requirement specification, the nouns USER and TICKET jump
out as being the two main things you want to track. It's tempting to split users into two different sets—technicians and
end users—but the type of user is merely an attribute of a user.

An object that is a little harder to identify is TICKET DETAIL. It’s completely valid to think that this would merely
be an attribute of a TICKET; however, the clue comes in the fact that you can’t concretely identify how many TICKET
DETAIL entries there will be for any given TICKET. The fact that the number is unknown indicates that you should
create a table that is a child of the TICKET entity called TICKET DETAIL. This way, you can enter as many detail
records as you need.

So, you've identified three major entities: USERs, TICKETs, and TICKET DETAILSs. You now need to think about
the attributes of each of these entities and what type of data they will hold. Searching back through the statement of
requirements, talking to the technicians about what they track today, and thinking about what types of things you'd
want to be able to track during the process of solving a problem, you can identify a number of attributes about your
objects. Tables 3-1 through 3-3 show these attributes.

Table 3-1. USER Attributes

Attribute Name Type of Data Comment

User ID Text A unique ID for each user

User Name Text Alogin id for each user

Password Text The password used to log in to the system

Table 3-2. TICKET Attributes

Attribute Name Type of Data Comment

Ticket ID Number A unique way to identify the ticket

Subject Text A brief one-line statement of the problem

Descr Text A detailed description of the problem

Status Text The status of the ticket during processing (OPEN, PENDING, CLOSED,
and so on)

Created By Text The user who logged the ticket

Created On Date The date the user created the ticket

Closed On Date The date the ticket was closed

Assigned To Text The technician who is assigned to work on the ticket

31

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

Table 3-3. TICKET DETAIL Attributes

Attribute Name Type of Data Comment

Ticket Details ID Number A unique way to identify this detail entry

Ticket ID Number Which ticket this detail is linked to

Details Text A text description of any details entered by the technician
Created By Text The user who logged the ticket

Created On Date The date the user created the ticket

Although it’s good to try to be as detailed as possible as early as you can, you don’t have to be perfect here.
You can always go back and alter or expand the data you wish to capture as you identify other potential attributes.

System Design with APEX in Mind

Because APEX not only resides in but is built on the Oracle database, you would think that designing database objects
for APEX would be the same as designing for any other system that uses Oracle as a data store—and in some aspects
you would be right. However, there are definitely some things you need to understand when designing for an APEX
system that will make your life much easier.

Most of what you do with APEX, at least initially, uses a series of wizards. If the database objects are designed
with APEX in mind, the wizards will do far more work for you; therefore, you'll need to do far less fine tuning
manually. The following sections discuss the most important design considerations and how they affect what the
wizards do for you.

Table Definition and User Interface Defaults

One such area you see in more detail later is user-interface defaults (UI Defaults). It's important to know that when
you use UI Defaults, certain table attributes are translated into default settings used across APEX. Here are some of the
more far-reaching things you can do at the table level to help make UI Defaults more useful:

e Placing comments on a table column seeds that item’s UI Default help text with the text of the
comment.

e Marking a column as NOT NULL at the database level triggers a Required flag to be set in the UI
Defaults.

e Date and Timestamp data types are set up to display as Date Pickers on input forms.

e The order in which the columns appear in the table is the default order in which the UI
Defaults set them to display on a form or report.

e Defining a column as a BLOB sets the form-level UI Defaults to use APEX’s declarative blob
functionality.

You set up and modify UI Defaults in a later chapter so you can see for yourself how design decisions affect the
way UI Defaults are set up.

32

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

APEX and Primary Keys

APEX is set up to make the best use of sequence-based surrogate primary keys of no more than two columns.
Although you can still use APEX on table structures that use multicolumn natural keys, it’s far easier and you get much
more out of the box if you give APEX what it likes.

We have worked with many systems over the years that implemented multicolumn natural keys, and we’ve
successfully implemented APEX systems on top of these types of data structures. However, we ended up hand coding
the logic that APEX would have provided for free had the structures used one or two column surrogate keys.

In APEX 4, the ability to use ROWIDs in place of primary keys was introduced to help solve the problem of
multicolumn primary keys. This feature provides a way to bypass the perceived limitation of APEX’s two-column
primary key limit by using the ROWID as the primary key.

Although using ROWIDs in this manner is technically and syntactically correct, when building an APEX application
from scratch, it’s still considered a best practice to use single-column surrogate primary keys based on a database
sequence and assigned by database triggers.

If you take the example of the TICKET table, the ID for a ticket is an arbitrary piece of data used only to uniquely
identify one ticket from another. Therefore, it easily fits into the realm of a surrogate primary key. Even if the
spreadsheet that the help-desk technicians currently use has IDs assigned to the tickets, you can load those values
and start your sequence counting at a point above the highest current TICKET ID. The same is true for TICKET
DETAILS. Even in the USER table, where you have a unique single-column natural key (the User Name), it behooves
you to implement a surrogate key to be able to take advantage of the built-in APEX code paths.

Business Logic vs. User Interface Logic

Because it’s written in PL/SQL, APEX takes full advantage of everything that PL/SQL has to offer. The APEX
development team has made thorough use of stored PL/SQL program units for their business logic, and you can take
avery important lesson from them.

Although it’s arguably a valid development method to prototype your business logic by first coding it as an
anonymous PL/SQL block inside of APEX, it’s foolish to leave it there long term. By moving it out into stored program
units, you gain in many different ways.

One very important gain is in the realm of performance. Anonymous PL/SQL blocks are stored in the APEX
metadata as uncompiled PL/SQL code. Each time they're required to run, they must first be extracted from the APEX
metadata, parsed, compiled, and then run. This process carries quite an overhead if the PL/SQL in question is part of
a page that gets thousands or even hundreds of thousands of hits a day. If you move that code into a stored program
unit in the database, the retrieval, parse, and compile steps are all skipped, and the code is run directly.

Another benefit is reusability. If the same logic is used in more than one place, it can simply be called instead
of duplicated in two anonymous blocks. Therefore, any change to the business logic need only happen in one place.
Another reusability benefit might occur if multiple systems (some being non-APEX) need access to the same business
logic. When stored in a PL/SQL program unit, it doesn’t matter whether the calling system is APEX, .NET, Java, or PHP.
They can all use the same logic.

Finally, by moving business logic code into stored program units, you gain the ability to code, debug, and test
these program units outside of the restrictions of APEX, using your favorite PL/SQL coding tool instead. However,
not all code needs to be moved out into the database. User interface logic that manages and manipulates items
on the page, such as computations, validations, and processes, is often best kept as part of the page. Such logic is
often so page specific and so small in footprint that the gain from moving it out to the database isn’t worth the
extra management overhead. As a general rule of thumb, logic that controls or manipulates the Ul is best placed
in APEX, and logic that implements business rules or controls the data is best placed in stored program units in
the database.

33

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

Placement of Database Objects

The Oracle database is very flexible, allowing data from multiple schemas to be granted to and queried by other
schemas, even across database links. The APEX wizards have been coded to work best when the database objects
reside in a “parse as” schema assigned directly to the workspace.

The APEX wizards make heavy use of database metadata for the objects in its “parse as” schemas. If you're trying
to create applications against synonyms from another schema or across a database link to another database, in many
cases the wizards won’t be functional because the metadata for these objects is unavailable. Some features won’t work
at all, such as the management of BLOB data across database links.

In general, reports are much easier to deal with when it comes to disparate data, because you can supply a
working query and create a report. Forms, however, become much more difficult because the insert, update, and
delete logic must be coded manually instead of relying on the APEX-supplied automated DML processes.

Although it’s not always possible, the best practice is to create the underlying database objects in the “parse as”
schema for the application. This is how you will architect your help-desk system.

Translating Theory to Practice

Now that you have a reasonable understanding of the things you need to think about when designing the database
objects for your system, you can translate your text-based tables into a real schema definition. Although it’s very easy
to take the previously described objects and attributes straight to SQL Workshop and start entering their definition,
it’s usually a good idea to go through the steps of creating an entity-relationship diagram (ERD). Often, the action of
doing this can bring other design considerations to light.

There are dozens of ways to draw ERDs—from pen and paper to high-end database design tools. However, we
tend to take the middle ground and use Oracle’s SQL Developer Data Modeler, a robust and free tool from Oracle.

Figure 3-1 shows the results of using the Data Modeler to create the ERD from the information in the initial
definitions.

TICKETS

P * TICKET_ID NUMBER
SUBJECT VARCHARZ (255 BYTE}
DESCR VARCHARZ (4000 BYTE}
* CREATED_BY NUMEER

STATUS VARCHAR2Z (50) By — — —
* CREATED_ON DATE
CLOSED_ON DATE

F ASSICNED_TO NUMBER

l&= TICKETS_PK
USERS
+ P * USER_ID NUMBER
_ _ _pjU * USER.NAME VARCHARZ (255)
I * PASSWORD _ VARCHAR2 (255 BYTE)
| = USERS_PK
| & USERS_UN

TICKET_DETAILS
F * TICKET_DETAILS_ID NUMBER

F TICKET_ID NUMBER
DETAILS WARCHARZ {4000 BYTE)
CREATED_BY NUMBER
CREATED_ON DATE

&= TICKET_DETAILS_PK

Figure 3-1. First draft of database design

The diagram shows each table having a surrogate primary key that uniquely identifies the records. As discussed
in the previous section, this allows the APEX wizards to work more seamlessly and generate more complete objects.

There is a foreign key in place between TICKETS and USERS to identify the person to whom the ticket is currently
assigned. In addition, a unique constraint is placed on the USER_NAME column of the USERS table to make sure
someone doesn’t accidentally create two users with the same USER_NAME.

34

CHAPTER 3 ' IDENTIFYING THE PROBLEM AND DESIGNING THE SOLUTION

Although this isn’t likely to be the final version of the data model, it’s probably complete enough for a start.
Using your ERD tool, you could go ahead and generate the database object creation scripts and then upload and run
them through APEX SQL Workshop’s SQL Scripts interface. However, because your data model is so small, in the next
chapter you use the Object Browser tool to create the objects from scratch.

Summary

Identifying the problems your APEX application is supposed to solve is only half the battle. Good database design—and
designing specifically with APEX in mind—is the key to creating a successful APEX application. Taking the time to
make sure you have a solid foundation means you can take full advantage of everything APEX gives you so that there
is less work to do later.

35

CHAPTER 4

SQL Workshop

Now that you have a graphical representation of what your underlying tables should look like, in the form of an
entity-relationship diagram (ERD), it’s time to dig in and start creating the objects. As mentioned before, you could
use your ERD tool to generate the scripts, but to get used to using the SQL Workshop, you'll create these objects
from scratch.

Note For this and many of the following chapters, you need to download the code that accompanies the book. If you
haven’t already done so, download the code . zip file from this book’s home page at www.apress.com. Then unzipitto a
directory where you can retrieve the files easily.

Creating Objects with the Object Browser

SQL Workshop’s Object Browser is somewhat misnamed, because it not only allows you to view database objects

but also lets you create and edit them. For now, you'll skip the USERS table; you come back to it later in the book. Right
now, you'll focus on the TICKETS and TICKET_DETAILS tables. From this point forward, you'll follow step-by-step
instructions interspersed with figures and discussions about what you're trying to achieve and why you'’re doing it the
way you are. Let’s get started:

1. Log into your APEX workspace. You're presented with the workspace’s Home page, which,
unless you've been doing other work in this workspace, probably looks a little sparse.

2. Using the tabbed navigation bar across the top of the Home page, pull down the
SQL Workshop submenu by clicking the arrow on the right side of the tab (see Figure 4-1).

Application Builder v SQL Workshop ~ | Team Development ~ | Administration v
Object Browser {-j

Object Browser
SQL Commands:

DN 55 @

5 'Y Query Builder

£\ 3% L%

1 N : g 18

- Data Workshop

Application Bu SQL Workshop Team Development Administration

- Object Reports

Figure 4-1. Navigate to the Object Browser

37

http://www.apress.com/

CHAPTER 4 © SQL WORKSHOP

3. Click the Object Browser option.

4. Inthe Object Browser, click the Create button in the upper-right corner and select Table
from the drop-down menu.

The Create Table Wizard opens. The first screen (Figure 4-2) allows you to name the table and enter the details for
each of the table’s columns. Using the two arrows in the Move column, you can move the columns into whatever order
you like. This affects the order in which they’re defined and stored in the table. If you run out of empty rows to enter
columns into, you can click the Add Column button to add a new empty column definition row to the form.

€ || cancel Next »
* Table Name | TICKETS Preserve Case &
Column Name Type Precision Scale Not Null Move
TICKET_ID NUMBER s Y
SUBJECT VARCHAR2 " 255 & LA
DESCR VARCHAR2 - 4000 Yi
STATUS VARCHAR2 - 20 Lg Yi
ASSIGNED_TO VARCHAR2 : 50 Ti
CREATED_ON DATE : @ Ti
CLOSED_ON DATE - Yi
CREATED_BY VARCHAR2 : 50| T

Add Column

Figure 4-2. Defining the table and its columns

5. Enter the details for the TICKETS table as indicated in the ERD from the end of Chapter 3
and in Figure 4-2. Then click Next.

The next page (Figure 4-3) lets you choose how you would like the primary key to be populated and which
column to use as the primary key. The four options for primary key are fairly self-explanatory, but the two in the
middle are probably the most common. You're starting from scratch and therefore don’t have any existing sequences
defined in your database. By selecting “Populate from a new sequence,” you tell APEX to create a sequence for you
and create a database trigger on the table that will populate the selected primary-key column with the next value from
the sequence, unless the field already has a value. You're given the chance to name the sequence in this step as well.
In this instance, you'll use the default name given.

38

CHAPTER 4

| L4 || Cancel ‘ Next »

Tablename: TICKETS

Primary Key: () No Primary Key
@ Populated from a new sequence
) Populated from an existing sequence
() Not populated

* Primary Key Gonstraint Name | TICKETS_PK.
* Primary Key | TICKET_ID{NUMBER)

* Sequence Name | TICKETS_SEQ

Primary Key
A primary

Figure 4-3. Defining the table’s primary key
6. Select the Populated from a new sequence radio button. After the screen changes, select
TICKET_ID (NUMBER) for the primary key. Click Next.

7. You're not going to create any foreign keys in this table just yet, so leave the defaults and
click Next.

SQL WORKSHOP

The Constraints screen in Figure 4-4 allows you to add either Unique or Check constraints to the table definition.
You add a constraint by defining the constraint in the Add Constraints region and clicking the Add button to add it to
the list. Below the Add Constraints region are two help regions. Clicking the arrow to the left of the region title expands
the help and shows the columns you defined in the table and examples of how to code various check constraints.

| £ H Cancel ‘ Next »

@ Check () Unigue

*Name TICKETS_ckl

» Available Columns
» Example Check Constraints

Constraints
Use this page to define constraints for your table. You can create multiple constraints of each type but must Add each constraint. Only those constraints displayed in the report

at the top of the page will be included in the resulting create table statement.

Check Constraint
A check constraint is a validation check on one or more columns within the table. No value can be inserted or updated in a table which violates an enabled check constraint

A unique constraint designates a column or a combination of columns as a unique key. To satisfy a unique constraint, no two rows in the table can have the same values for the

specified columns.

Figure 4-4. The Constraints definition step

vww allitebooks.conl

39

http://www.allitebooks.org

CHAPTER 4 © SQL WORKSHOP

When you click the Add button, the definition of the constraint is added to the list of constraints at the top of the
page. You can define as many constraints on a given table as necessary. Once you're done, simply continue with
the wizard:

8. You're not going to create any Unique or Check constraints here, so stick with the defaults
and click Next.

The final step of the Create Table Wizard gives you the chance to confirm your request and, if desired, review the
code that will be executed. If you need to make changes to the table definition, you can use the buttons at the top of
the region to navigate back through the wizard steps. To view the code, click the arrow to the left of the SQL label to
expand the region, as shown in Figure 4-5.

< Cancel Create Table

Please confirm your request.

Schema: APRESS

Table name: TICKETS

v saL
"SUBJECT" VARCHAR2(255) NOT NULL,
"DESCR" VARCHAR2(4008@),
"STATUS" VARCHARZ(2@) NOT NULL,

"ASSIGNED_TO" VARCHAR2(5@),

"CREATED_ON" DATE NOT NULL,

"CLOSED_ON" DATE,

"CREATED_BY" VARCHAR2(5@),

constraint "TICKETS_PK" primary key ("TICKET_ID"}
)
4

CREATE sequence "TICKETS_SEQ"
i

CREATE trigger "BI_TICKETS"
before insert on "TICKETS"
for each row
begin
if NEW."TICKET_ID" is null then
select "TICKETS_SEQ".nextwval into :NEW."TICKET_ID" from

Aual -

Figure 4-5. Review the Create Table Wizard's SQL

9. Review the text in the SQL region presented by the Create Table Wizard. Click
Create Table to complete the wizard.

When you've successfully completed the wizard, you're taken back to the Object Browser, and the definition of
the TICKETS table is displayed. Take a moment to examine the definition of the table. You should see all the columns
that you defined listed. If you click the Constraints tab at the top of the definition region, you see a number of different
constraints including the primary-key constraint on TICKET_ID.

In the upper-left corner of the Object Browser is a select list that defines the object type being browsed. Use this
select list to choose Sequences. You see that APEX created a sequence called TICKETS_SEQ that will be used to fill
the TICKET ID.

40

CHAPTER 4 © SQL WORKSHOP

Once again, use the Object Type select list and choose Triggers. You see a trigger named BI_TICKETS (BI stands
for “before insert”). Clicking the Code tab above the trigger details shows the code for the trigger that is using the
TICKETS_SEQsequence to fill the TICKET _ID if it’s null. You should see code similar to the following:

create or replace trigger "BI_TICKETS"
before insert on "TICKETS"
for each row
begin
if :NEW."TICKET ID" is null then
select "TICKETS_SEQ".nextval into :NEW."TICKET ID" from sys.dual;
end if;
end;

Now that you have the TICKETS table defined, let's go back and create the TICKET_DETAILS table. This time you'll
create a foreign key to the TICKETS table, as a CASCADE DELETE. This means that if you delete a ticket, the ticket details
will automatically be deleted as well.

10. Start the Create Table Wizard using the Create button.

11. Enter the table name and column definitions based on the ERD and Figure 4-6, and

click Next.

€ || cancel Next)
* Table Name | TICKET_DETAILS Preserve Case
Column Name Type Precision Scale Not Null Move
TICKET_DETAILS_ID NUMBER = Ti
TICKET_ID NUMBER & ™ Ti
DETAILS VARCHARZ : 4000 Ti
CREATED_BY WARCHAR2 = s0 o Ti
CREATED_ON DATE : Ti

- Select Datatype - . Ti

- Select Datatype - = Ti

- Select Datatype - = Ti

Add Column

Figure 4-6. Defining the TICKET_DETAILS table

41

CHAPTER 4 © SQL WORKSHOP

The next set of steps is purposefully a bit more vague than the previous ones. You should be used to using the
Create Table Wizard by now, but if you need a refresher, just look at the previous steps.

12. Choose Populate from a new sequence for the primary key, select
TICKET_DETAILS_ID(NUMBER) as the Primary Key column, and click Next.

13. Add aforeign key between the TICKET_ID in the TICKET DETAILS table and the TICKET_ID
in the TICKETS table. Make sure the Delete action is set to Cascade Delete. Your screen
should look similar to that in Figure 4-7. Additionally, make sure you tab out of the

References Table field in order to cause APEX to display the shuttle control that allows you
to choose the referenced columns.

€ || cancel A Next)»

Add Foreign Key

Disallow Delete
Name | TICKET_DETAILS_fk1 (*) Cascade Delste

Set Null on Delete

Select Key Column(s) Key Columnis)

TICKET_DETAILS_ID - TICKET_ID
DETAILS

CREATED_BY

CREATED_ON

«

References Table | TICKETS ~ ¥

Select Reference Columnis) Referenced Columni(s)
SUEJECT - TICKET_ID

DESCR

STATUS

ASSIGNED_TO

CREATED_OMN

~

Figure 4-7. Defining a cascade-delete foreign key for TICKET _ID

14. Click the Add button to add the new foreign-key constraint.

15. Click Next (see Figure 4-8).

TICKET_DETAILS_FK1 TICKET_ID TICKETS TICKET_ID cascade X

Figure 4-8. Foreign key as defined in the table wizard

16. No constraints are required for this table. Click Next.

17. Review the SQL, and click Create Table to complete the wizard.

42

CHAPTER 4 © SQL WORKSHOP

Loading Data with the Data Workshop Utility

Now that you have your two base tables defined, you can begin working to migrate the old data into your shiny new
data structure. You can use SQL Workshop’s Data Workshop utility to load and unload data from an Oracle schema
in a number of ways, as shown in Figure 4-9. The Data Load option allows you to choose Text Data, XML Data, and
Spreadsheet Data.

Data Load Data Unload

Figure 4-9. Data Load and Unload methods provided by the Data Workshop utility

Although three separate options are presented, the Text Data and Spreadsheet Data options actually use the same
Data Load Wizard. There is little or no discernible difference in the actions of the wizard regardless of which option
you select.

The third option (XML Data) allows you to load data that has been exported in Oracle’s proprietary XML Data
Transport format. The format looks like this:

<ROWSET>
<ROW>
<USER_ID>2</USER_ID>
<USER_NAME>DOUG</USER_NAME>
<PASSWORD>A69856770A9AB9CBB0479573FCB3E2A5</PASSWORD>
</ROW>
<ROW>
<USER_ID>3</USER_ID>
<USER_NAME>DAVID</USER_NAME>
<PASSWORD>E2E89134B8AC6E1FFC14139A6FB2C10B</PASSWORD>
</ROW>
</ROWSET>

In your imaginary company, the help-desk technicians have been using Microsoft Excel to track tickets, so you're
going to load the data using the Spreadsheet Data option. A quick glance at the spreadsheet your technicians use
shows you that they have two separate sheets in the Excel workbook: TICKETS and TICKET_DETAILS.

Knowing that you're using preexisting tables that already have primary and foreign keys in place, you need to be
careful about how you load the data. TICKET_DETAILS depend on TICKETS for their parentage, so you need to load
the TICKETS data first. Your spreadsheet should look like Figure 4-10.

43

CHAPTER 4 © SQL WORKSHOP
| < B C D E F G H
{1 tickel_id subject descr stalus assigned_to created_on closed_on created_by
2 1 Cannat log into E-Mail User called and cannot log into his MS Outlook e-mail Account. OPEN SCOTT 1-Jan-07 3-Jan-C7 PAUL
3 2 PC will not turn on The user's PC will nol tum on when the power button is pressed CLOSED JOHN 1-Jan-07 RINGO
4 3 Need more memary User needs more memory installed OPEN DOUG 1-Jan-07 GEORGE
5 4 MSIE Crashed 4 imese MSIE keeps on crashing for any sile CLOSED SCOTT 1-Jan-07 JOHN
1 6 5 Need to install SP2 §P2 Upgrade needed in order to be comgpliant OPEN DIMITRI 1-Jan-07 ALEX
7 6 Network drive nol being mapped X: drive not being mapped to \corpishare OPEN DIMITRI 1-Jan-07 GEDDY
8 7 BSOD after rebooling Blue Screen of Death every tme syslem is rebooted OPEN DoUG 2-Jan-07 NEAL
9 B Wireless signal not strong encugh ‘Wi-Fi signal not as strang as it was last week CLOSED SCaTT 2-Jan-07 3-Jan-07 JOHN
10 9 | think | have a virus Something i not right - PC is slow OPEN JOHN 2-Jan07 ROBERT
11 10 Virus Definitions Dates Message stating thal virus updales are needed keeps appearing CLOSED SCOTT 2-JanOT JOHN
12 11 Funny smell coming from PC There is an odd odor emanating from my PC.. OPEN DIMITRI 3-Jan-07 JIMMY
13 12 Accdentally deleted Q2.ppt File Q2.ppt placed in Recycle Bin; bin emptied OPEN JOHN 3-Jan-07 EDDIE
14 13 Seweral dead pixels on screen There are al least 4 dead pixels on e display PENDING DOUG 3-Jan-07 ALEX
15 14 Smartphone will not syne with Outiook Motorola Q dees not syne with Outlook contacts and calendar events OPEN SCOTT 3-Jan-07 MICHAEL
16 15 Gelting Out of Memory errors. Same Out of Memory error occurs when Office starts PENDING JOHN 3-Jan-07 DAVID
17 16 VPN Client Install Issues Cannat install VPN client - installer errors out each time OPEN pouc 4-Jan-07 JACKIE
18 17 Mouse is not working Mouse does not move the pointer anymaore OPEN DIMITRI 4-Jan-07 TITO
19 18 Speakers are oo soft Cannat get good quality of sound from buill-in speakers OPEN SCaTT 4-Jan-07 JERMAINE
20 19 Keyboard busted None of the keys work (| had lo use someone elses PC to enter this) PENDING JOHN 5-Jan-07 MICHAEL
21 20 Disk Is Full No more space error keep coming up OPEN DOUG 5-Jan-07 MARLON

Figure 4-10. Spreadsheet data from the TICKETS tab of your Excel workbook

Once you have the TICKETS data in the clipboard, you can switch back to APEX and use the Data Load
Wizard to insert this data into your TICKETS table. Here are the steps to follow to load data from the spreadsheet into
the database:

1. Locate the helpdesk_spreadsheet.xls file where you downloaded the supporting files for
this book, and open it with Microsoft Excel. Navigate to the TICKETS tab. Notice that you
have a row for each ticket and a header row that contains the column headings for each of
the columns.

2. Select all the data, including the column headings, and copy it to the clipboard. Be
cautious not to accidentally select any rows that don’t have data in them, because that may
cause phantom rows or errors in the Data Load Wizard.

3. Switch back to your web browser, and, using the pull-down menu on the SQL Workshop
tab, select Data Workshop.

4. Inthe Data Load region, click Spreadsheet Data. You should see the Load Data dialog
shown in Figure 4-11.

Cancel . Next)
Load To:

(®) Existing table

() New table

Load From:

Upload file (comma separated or tab delimited)
(®) Copy and paste

Figure 4-11. Preparing to copy and paste the spreadsheet data and load it into the existing TICKETS table
5. Inthe wizard, select Existing table for Load To and Copy and paste for Load From, and
click Next.

6. Select your “parse as” Schema from the Schema select list. This is the same schema in
which you created your tables in the Object Browser.

7. Select TICKETS for the Table Name, as shown in Figure 4-12, and click Next. This is the
table into which you’ll load the TICKETS data.

44

CHAPTER 4 © SQL WORKSHOP

€ || cancel Next)

e schema and name of the table you would like load data into

* Table Owner [APRESS 3

*Table Name [TICKETS

Figure 4-12. Enter the name of the table into which you're going to load the data

8. Paste the data that you copied to the clipboard in step 2 into the Data text area, and ensure

that First row contains column names box is checked, as shown in Figure 4-13. Click Next.

€ || cancel Next)

eadsheet program, such as Microsoft Excel, and paste it into the Data field

Copy the data you want to import from a spr

* Data

17 Mouse is not working Mouse does not move the
pointer anymore OPEN KAREN 4-lan-87 TITO
18 Speakers are too soft Cannot get good quality of
sound from built-in speakers OPEN SCOTT 4-lan-87
JERMAINE

19 Keyboard busted None of the keys work (I had to use
someone elses PC to enter this) PENDING MARTIN 5-Jan-87
MICHAEL

20 Disk is Full No more space error keep coming up
OPEN DouG 5-Jan-@7 MARLON

EI First row contains column names

~ Globalization

Currency Symbol | §
Group Separator |,

Decimal Character

Figure 4-13. Pasting the spreadsheet data into the Data text box

When you click Next, APEX parses the data you've pasted in and does its best to match the column names in the

first row of the spreadsheet data to the column names of the table into which you're loading the data. On the next
screen, you're presented with column mapping so you can check its accuracy and, if necessary, make alterations

and corrections.

APEX is very good about matching column names as defined in the spreadsheet with those that have the same
name in the table. However, if the names differ, it doesn'’t try to guess but instead leaves the mapping to you.

If you scroll to the right, you should see that APEX has matched all the column names from the spreadsheet
correctly to the table columns. If, for some reason, the mappings aren’t right, you can adjust them using the

drop-downs shown in Figure 4-14.

45

CHAPTER 4 © SQL WORKSHOP

This page pr

ews how your data will be loaded. Match the database column names with columns in the data. To upload data to the selected table, click Load Data.
Schema: APRESS

Table Mame: TICKETS

To upl t Yes or No. An asterisk (*) indicates a required column. Use SQL Wo % 1 as changing the column length, making
not null columns, or changing the column type TICKET_ID - number *
SUBJECT - varchar2(255) *

Column Names | TICKET_ID - number * +| [SUBJECT - varchar2(255)* * STATUS -
STATUS - varchar2(20)

Format ASSIGNED_TO - varchar2(50)
CREATED_ON - date *

Upload Yes =+ Yes + CLOSED_ON - date Yes
CREATED_BY - varchar2(50)

Row 1 1 Cannot log into E-Mail ere e S OUTI00K &-mail Account. OPEN

Row 2 2 PC will not turn on The user''s PC will not turn on when the power button is pressed. CLOSED

Figure 4-14. Manually mapping the data columns to the table
9. When you're sure all the mappings are correct, click the Load Data button to load the data
into the TICKETS table.

After the data is loaded, you're presented the Spreadsheet Repository screen shown in Figure 4-15. That screen
shows that 20 rows were loaded into the database and zero errors occurred during loading.

q ADMIN Now Spreadsheet Import AFRESS TICKETS 20 0

1-1
Figure 4-15. Data has been loaded into the TICKETS table

If you navigate to the Object Browser, select the TICKETS table, and look at the data in that table, you can see that
the records that were in your spreadsheet have been loaded into the database. To finish the job, you need to load the
data for TICKET_DETAILS. Here's what to do:

10. Navigate to the Data Workshop, click the Spreadsheet Data link in the Data Load region,
and click Next.

11. Inthe wizard, select Existing Table for Load To and Copy and paste for Load From, and
click Next.

12. Select your “parse as” Schema from the Schema select list. This is the same schema in
which you created your tables in the Object Browser.

13. Select TICKET_DETAILS for the Table Name, and click Next.

14. In Microsoft Excel, navigate to the TICKET DETAILS tab and copy all the data, including
the column headings, in that spreadsheet to the clipboard.

15. Inyour browser, paste the data you copied to the clipboard into the Data text area, ensure
that First row contains column names is checked, and click Next.

46

CHAPTER 4 © SQL WORKSHOP

16. Review the mappings made by APEX in the Define Column Mapping region. It should have
mapped everything correctly. Click Load Data to complete the data load. The summary
should say that 22 records were loaded into the TICKET_DETAILS table with zero errors.

You now have both of the main tables created and loaded with the legacy data. This alone is enough to start
developing an application, but you're not quite ready to begin yet.

Creating a Lookup Table

Have alook at the definitions and data of the tables you just created. They’re basically mirror images of the
spreadsheet tabs the technicians were using before. If you examine the data closely, notice that there are still some
areas where the data isn’t quite normalized the best that it could be.

For instance, in the TICKETS table, notice that the STATUS column has only three values—OPEN, CLOSED, and
PENDING—which repeat over and over. The data values in this column indicate that it's a perfect candidate for creating
alookup table. Although it's tempting to go off and create the table manually with the Create Table Wizard and then
manually migrate the data, APEX can create a lookup table—complete with its own sequence, trigger, and foreign
key—and modify the original table so it points to the new lookup table, all without you writing a line of code.

Here's how:

1. Navigate to the Object Browser, and select the TICKETS table in the Object List on the left
side of the screen. You should see results similar to those shown in Figure 4-16.

s otk Gbiuct Browser sl ME DS NS

I - TICKETS Craate

Table Dota Incexss Model Constraints Grants Statstics Ul Detwuns Triggers Dependencies SOL

Column Name Data Type Hullsble Defasht Primary Key

Figure 4-16. Clicking the Create Lookup Table button starts the Create Lookup Table Wizard

2. Make sure the Table tab is selected.

3. Below the tab bar is a set of button-like links. Click the Create Lookup Table button, as
shown by the mouse arrow in Figure 4-16; it starts the Create Lookup Table Wizard.

47

CHAPTER 4 © SQL WORKSHOP

The first page of the Create Lookup Table Wizard (Figure 4-17) gives you the option to show only VARCHAR column
types or all column types. It defaults to VARCHAR because that's most likely to be the candidate for lookup tables.
Looking at the columns presented in the wizard, you see that one of the VARCHAR columns is your STATUS column.

Create Lookup Table

Select the column you would like to create a lookup table for. The selected column will become a foreign key to the lookup table.

Schema: APRESS
Table Name: TICKETS

Show: () All Column Types
{®)VARCHAR Column Types

* Column: (C)SUBJECT - varchar2
(_JDESCR - varchar2
(®)STATUS - varchar?
(_JASSIGNED_TO - varchar2
(_JCREATED_BY - varchar2

Cancel [-

Figure 4-17. Selecting the STATUS column as the source of your lookup table

4. Select STATUS as the column from which you want to create the lookup table, and
click Next.

5. On this screen you can name your lookup table and the sequence that is related to it. APEX
has chosen a reasonable name for the new table and sequence, so take the defaults and
click Next.

6. The final screen of the wizard (Figure 4-18) provides you with information about the
choices made and the action that is about to be performed. It’s easy to miss the SQL syntax
link just below the wizard region. Click the SQL link to show the SQL.

Create Lookup Table

Confirming this request, creates a new table and adjusts your current table structure.

Schema: APRESS Lookup table: STATUS LOOKUP
Table: TICKETS Lookup table primary key: STATUS ID

Lookup based on Column: STATUS Lookup table sequence: STATUS_LOOKUP_SEQ

Cancel < Previous m

SQL

Figure 4-18. Clicking the SQL syntax link shows the SQL about to be executed

48

CHAPTER 4 © SQL WORKSHOP

Examining the SQL shows the steps that will be taken to create the new lookup table, associated sequence, and
trigger; insert the data into the table; and update the data in the originating table so that it references your new lookup
table. That’s quite a lot of work saved.

7. Click Finish to complete the wizard. You're taken back to the Object Browser.
The STATUS_LOOKUP table is highlighted and its details shown.

Use the Object Browser to examine the objects that the wizard created.

Loading and Running SQL Scripts

The SQL Scripts tool of SQL Workshop allows you to create, upload, manage, and run SQL scripts. These scripts
are similar to SQL*PLUS scripts in many ways. However, if you use scripts written for SQL*PLUS, APEX ignores any
SQL*PLUS-specific syntax.

Once a script is created or loaded, it’s moved into the script repository, where it remains until you decide to
remove it. From the script repository, you can decide to edit or run the script. When you run a script, APEX stores the
results for you to view later. For example, you can come back to review the results for possible error messages.

You're going to load and run a script that will modify the underlying data just a bit, and here’s why.

In the real world, the spreadsheet you received from the help-desk team would have current dates and data in it;
however, the ticket dates in the spreadsheet that is downloaded with the . zip file accompanying this book very likely
aren't current. This would cause you to have to search back in history for the tickets if you were searching by date.
This script will update these dates so they're recent.

Another thing you need to take into consideration is that you loaded a bunch of data into your tables that already
had IDs assigned to them. Because the IDs were loaded with the data, you didn’t use your database sequences.
Therefore, your sequences are out of synch with the data. You need to drop and re-create your sequences so the next
sequence number is greater than the largest ID used in the associated table.

You're also going to alter the Before Insert trigger that was automatically created on the TICKETS table so that it
automatically fills in the CREATED_ON column. You'll also create a couple of database views that will be used later to
retrieve data formatted for some of the specific charts and calendars you're going to create.

Finally, you'll create a function that, when passed a status name such as OPEN, passes back the ID for that status.
This function is used in a number of places, because you can't guarantee you know the ID value of a given status.
Therefore, this function is the only safe way to get the associated ID for a given status.

When you're in any of the SQL Workshop tools, an icon menu in the upper-right corner of the screen provides
quick links to each of the other tools. In Figure 4-19, the hand-shaped pointer is pointing to the SQL Scripts icon.

Schema | APRESS | ¢ | B B = 88 9 A
W

Figure 4-19. The icon-based quick menu in SQL Workshop

Here’s what to do to run the script that will update your schema objects appropriately:

1. Click the SQL Scripts icon in the SQL Workshop'’s quick menu. If you're not already in SQL
Workshop, use the pull-down menu from the SQL Workshop tab and choose SQL Scripts.

2. Click the Upload button in the upper-right section of the screen.
3. Click Browse to search for the SQL file to upload.

4. Inthe pop-up file-finder window, locate and select the ch4_schema_changes.sql file, and
click Upload. You don’t need to give the script a name; it defaults to the name of the script
as it appears at the OS level.

49

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 4 © SQL WORKSHOP

Once the file has been uploaded, you're presented with a SQL Scripts report showing the script that you just
uploaded. From this point, you can either edit or run the script. If you want to see what the script contains, feel free to
edit it. You can run the script from the edit screen as well.

5. Run the script by clicking either the Run button (if you're editing the script) or the Run
icon (if you're still viewing the SQL Scripts report).

6. Asshown in Figure 4-20, you're asked to make a selection between Run in Background
and Run Now. Select Run Now.

Run Script

You have reguested to run the following script. Please confirm your request.

Script Mame ch4_schema_changes.sql
Created on 11/26/2012 09:02:13 PM by ADMIN
Updated on 11/26/2012 09:02:13 PM by ADMIN

Number of Statements 17

Script Size in Bytes 3,087

Cancel Run Now Run in Background

Figure 4-20. Choose whether to Run in Background or Run Now

The script is run, and you're immediately taken to the Manage Script Results page. You'll most likely see that your
script status is Completed.

7. Click the View Results icon at the far-right end of the report row to see the results of the
script. Figure 4-21 shows the button to click.

Q- Go | Actions v

[a] Script Run By Started|¥] Elapsed Status Statements Bytes View Results
ch4 schema changes.sql = ADMIN MNow 020 Completed 17o0f17 0

O

Figure 4-21. Click the View Results icon to view the results of running the script

The View Results page allows you to see what happened when the script ran. The default view shows an overview
by displaying the first 50 or so characters of each statement along with some brief feedback and the number of rows
affected by the statement. Figure 4-22 shows the results from a run of the script.

50

CHAPTER 4 © SQL WORKSHOP

Script: ch4_schema_changes.sql Status: Complete

View: () Detail (&) Summary Rows | 15 3 | Go
A
1 0.01 update tickets set created_on = to_datel(to_char(sysdate 20 row(s) updated. 20
2 0.01 update tickets set closed_on = to_date((to_char(sysdate 2 row(s) updated. 2
3 0.00 update ticket_details set created_on = to_date{(to_char(22 row(s) updated. 22
A nini Al TER TARI E tirkat Aotaile ANN fila namae VART K AR?M2RRY Tahla altarad n

Figure 4-22. The Summary view of the script results

You can, however, get more detailed feedback by changing the report view to Detail. Doing so gives you far more
insight, especially if you have a script that has errors during execution. Figure 4-23 shows a detailed view.

Script: ¢h4_schema_changes.sql Status: Complete
View: (=) Detail () Summary Show: O Statement @ Results @ Feedback Go

update tickets set
created_on = to_date((to_char(sysdate - rownum, 'DD-MON-Y¥Y')
|| " 12:00PM'}), 'DD-MON-YY HH:MIFM')

20 row(s) updated. 0.01 seconds

update tickets set
closed_on = to_date((to_char(sysdate - rownum, 'DD-MON-YY')
|| " 12:00FPM'), 'DD-MON-YY HH:MIFM')
where cleosed _on 1is not null

Figure 4-23. The Detail view of the script results
In either view, you can quickly see if the script encountered any errors by scrolling to the bottom of the page and
looking at the report footer where the report displays the total number of statements processed, the number of those

that were successful, and the number that generated errors. Figure 4-24 shows the number of statements processed
from a run of the script.

Statements Processed 17
Successful 17
With Errors 0

Figure 4-24. In the footer of either report is the success summary for the script

User Interface Defaults

Before you start to write your application, one last thing you can do that will make your life easier along the way is to
create some User Interface (UI) Defaults. This, in our opinion, is one of the most underutilized features of APEX.

51

CHAPTER 4 © SQL WORKSHOP

Understanding User Interface Defaults

UI Defaults allow you to customize the default display attributes for tables, views, and their columns. They can be
used to control many properties including alignment, searchability, display sequence, what type of item is created for
a column, default values, and many more.

For instance, when you're creating a new form or report via a wizard (which is most of the time), APEX asks if you
wish to use UI Defaults. If you select Yes and defaults are available, APEX applies them to the appropriate regions or
items based on the tables or columns for which the attributes are defined. UI Defaults are divided into two categories:
Attribute Dictionary and Table Dictionary.

The Attribute Dictionary allows you to create more generic UI Defaults based on attribute names. Consider this a
more macro-level definition.

Let's say you create an attribute-level default for any attribute named PHONE_NUMBER. If a column named
PHONE_NUMBER appeared in a table and didn't have a Table Dictionary default assigned, the Attribute Dictionary
default would take effect.

Dictionary Attribute definitions can also be assigned synonyms, allowing more than one attribute name to share
the same actual definition. So, for instance, you could create the synonyms PHONE, TELEPHONE, PHONENUMBER, and so on
for the original PHONE_NUMBER definition. If the wizard ran into a column with any of those names, it would apply the
PHONE_NUMBER defaults to the APEX item that is created.

The Table Dictionary allows you to define defaults for a specific table or column, and those defaults are only
applied to APEX regions or items created for those specific items.

Here are some things to note about UI Defaults:

e Table Dictionary defaults always override Attribute Dictionary defaults.

¢ When an item is created using UI Defaults, no relationship is established with the UI Default.
Therefore, if you later change the definition of the UI Default, the changes aren’t propagated to
previously created items.

e Items created before UI Defaults have been established don’t inherit properties of the
UI Default.

e Developers can choose not to use Ul Defaults, and even if they're used, can override them
after the component is created.

Having said that, UI Defaults do help ensure consistency across your application and make your job much easier
as a developer.

Defining UI Defaults for Tables

UI Defaults can be managed either from SQL Workshop’s Object Browser or from SQL Workshop’s Utilities page.
Here’s what to do:

1. Navigate to SQL Workshop'’s UI Defaults page by clicking the arrow on the SQL Workshop
tab and selecting User Interface Defaults from the drop-down menu.

You're taken to the UI Defaults dashboard where things likely look pretty sparse. This is because you haven’t
actually created any UI Defaults yet. The first step to creating UI Defaults is to synchronize the Table Dictionary with
the database so it knows what tables are in your schema.

2. Click the Manage Table Dictionary button, and then click the Synchronize button on the
screen that appears.

52

CHAPTER 4 © SQL WORKSHOP
This initiates the Synchronization Wizard. This wizard shows you the number of tables with defaults defined and
the number without. In this case, you should have zero tables with defaults and four tables without.

3. Click the Synchronize Defaults button to begin the synchronization with the database.
This may take a little time.

Once the Table Dictionary is synchronized with the definitions is the database, you're presented with the report
in Figure 4-25 that shows each table that now has base UI Defaults. If you have other tables in your schema, they also
appear in this report.

Q- Co - E Actions v

=) v-fDefauIts Exist = 'Yes' o &

Object Name[a] Type Defaults Exist
STATUS LOOKUP TABLE = Yes
TICKETS TABLE = Yes
TICKETS VW VIEW Yes

TICKET ACTIVITY SUMMARY V VIEW Yes

TICKET ACTIVITY V VIEW Yes

TICKET DETAILS TABLE Yes

Figure 4-25. List of tables with UI Defaults defined

You can now view or edit the Ul Defaults for each of these tables. Start by viewing the UI Defaults for the
TICKETS table:

4. Click the TICKETS link in the report. You should see the results in Figure 4-26.

Schema: APRESS
Object Name: TICKETS
Object: 20f6
Form Region Title: Tickets
Report Region Title: Tickets
Object Exists: No

Edit Table Defaults | | € |

Q- Go Actions v
Column Name ~ Sequence(s) Label Column Group ~ Alignment Display In Report ~ Display In Form Required Help Length
TICKET ID 1 TicketId - Right v v v
SUBJECT 2 Subject - Left v v v
DESGR 3 Descr - Left v v
ASSIGNED TO 4 AssignedTo - Left v v [y
CREATED ON 5 CreatedOn - Left v v v
CLOSED ON 6 ClosedOn - Left v v
CREATED BY 7 CrestedBy - Left v v
STATUS ID 8 Statusld - Right v v

Figure 4-26. The table and column Ul Defaults overview

53

CHAPTER 4 © SQL WORKSHOP

On the page in Figure 4-26 you can see an overview of the UI Defaults for the TICKETS table. In the upper portion
of the report are the table-level definitions, including what the Form and Report regions based on this table will be
called. In the lower portion is a list of the table's columns, the labels that will be used, how they will be aligned when
used in a report, whether they will be displayed in a report or form, whether their REQUIRED attribute will be set in a
form, and whether they have any help text.

Next, edit both the table-level and column-level attributes:

5. Click the Edit Table Defaults button in the upper portion of the report. This allows you to
edit how Form and Report regions based on this table are named.

6. EnterManage Tickets for the Form Region Title, leave the Report Region Title as it is,
and click Apply Changes.

Clicking any of the column names takes you to a page that allows you to set UI Defaults for that specific column.
As you peruse the column UI Defaults, notice that several things have been set for you, including the REQUIRED
attribute. When APEX synchronized with the database, it saw that certain fields were marked as NOT NULL at the
database level and translated those constraints into UI Defaults for you.

APEX also makes some decisions based on the column’s data type, such as how to align the column when it’s
displayed in a report. Use the following information to alter the UI Defaults for the indicated columns by clicking the
link in the column name:

Column: SUBJECT

Label: Subject

Help Text: A brief title for the issue.
Column: DESCR

Label: Description

Help Text: Describes the ticket in detail. Please be as complete as you can.
Resizable: YES

Width: 50

Height: 5

Column: STATUS_ID

Label: Status

If you wish, you can go ahead and set the UI Defaults for any of the other columns and/or tables. Just remember,
what you do now will affect what the wizards create for you later, so if something doesn’t look exactly like what is
shown in the book, check what you set for UI Defaults.

Summary

SQL Workshop may not measure up to some of the more popular GUI tools, but it certainly has the power to do most
things you need to do with relation to creating and managing tables and data. You've also seen that SQL Workshop
has a few built-in but hidden gems like the Create Lookup Table Wizard. Finally, among the many useful utilities is
the UI Defaults manager, making your job as a developer just a bit easier.

Sure, this chapter hasn’t covered SQL Workshop in its entirety, but you've definitely gained a fair amount of
insight as to what it’s capable of. You use SQL Workshop for a number of other things throughout the book, but don’t
wait. Go poke around in some of the dark nooks and crannies and see what you find!

54

CHAPTER 5

Applications and Navigation

With some basic data created, you can now create the shell for your application. APEX provides a wizard for creating
applications. Inside, several options are available to assist with generating a starting application. Based on how much
prior planning has been done, the result of running the initial application wizard may vary. You start this chapter by
walking through the steps of the wizard, highlighting the most common features.

For the example application, you create the most basic shell of the application with only one page. In other
scenarios, you could create an initial draft of all your pages. In order to illustrate the individual wizards for creating
pages, you explore them in more detail in later chapters.

After the example application has been created, you'll add shared components to it. Shared components are
items and structures that are common across all the pages in the application. You prepare breadcrumbs, lists, and
lists of values (LOVs) for use; you also learn how the Global Page concept works. By the end of the chapter, you'll have
some basic components for the application and a starting outline for the remaining pages.

The Create Application Wizard

Applications in APEX are created through application imports, by copying an existing application, or by running the
Create Application Wizard. The Create Application Wizard is the first step in creating an application from scratch. This
chapter will walk you through the process of creating the Help Desk application using the Create Application Wizard.

To begin, navigate to the Application Builder in APEX. You can do this from the APEX home page by clicking
either the Application Builder menu item or the Application Builder icon shown in Figure 5-1. The Application Builder
shows a list of the current applications. At the top of the list is a highlighted Create button, shown in Figure 5-2. Click
the button, and the wizard starts.

Application Express

[IGEN Application Builder » SQL Workshop » Team Development s Administration

— By Q

Application Builder SQL Workshop Team Development Administration

Figure 5-1. The Application Builder icon on the APEX home page

55

CHAPTER 5 © APPLICATIONS AND NAVIGATION

Application Builder

All Applications Database Applications ‘Websheet Applications Packaged Applications |

Q- Go = iE || Actions v Reset | | Import _

Mo applications found.

Figure 5-2. The Create button

You're presented with three choices for application type: database, websheet, and packaged application.
The Application Builder will quickly become very familiar to you when you're working with APEX. Because of this,
the shortcut menu in Figure 5-3 is also available to assist with quick navigation even when you're in other sections
of APEX.

Application Builder » | SQL Work

Applications
- Database Applications
- Websheet Applications
- Packaged Applications

Create

Import

Export

New Repository

Iigrate
Welecg P-

Figure 5-3. The shortcut to creating an application

Sample and Packaged Applications

If this is a new workspace, there may or may not be a sample application that was created automatically when

the workspace was provisioned. The automatic installation of sample applications is a feature setting that can be
configured by the APEX administrator. If a sample application isn’t installed, you can install one manually either
by selecting the Install Sample Applications link or by choosing Packaged Applications in the first step of the Create
Application Wizard—both shown in Figure 5-4.

56

| Cancel ‘

(@) Database () Websheet () Packaged Application

[E From Spreadshest
D Copy of existing Application
[E From Application Template

D Install sample applications

» About

Figure 5-4. Choosing the type of application

CHAPTER 5 * APPLICATIONS AND NAVIGATION

Next)

You then see the page shown in Figure 5-5, which presents a list of the packaged applications included with
APEX 4.2. Although there are a number of applications in the Sample category aimed at helping you learn and
understand some of the finer points of what APEX is capable of, many of the applications that are included with
APEX 4.2 are hardened and can be used in production environments. The filters at the top of the page allow you to
narrow the applications you see by type and by whether the application is already installed.

i All Applications | Database Applications | \Webshest Applications | Packaged Applications |

| Ancategories | :] | AnAppications c]
| APEX Application Archive Artwork Catalog
{— Software Development Team Productivity, Tracking

| = Checklist Manager

@ Tracking, Team Productivity

Decision Manager
8 Team Productivity, Tracking

Expertise Tracker

ICE B

I | Go Live Check List Group Calendar

Figure 5-5. List of packaged applications

Community Requests
Software Development, Community

Tracking, Knowledge Management

Customer Tracker
Tracking, Marketing

| Bug Tracking
Software Development, Trackin
\| |

Feedback
Software Development

k’__, \J Incident Tracking

Selecting an application from the list takes you to an informational page about the application, providing a
description, version, and other details about minimum requirements. To install the application, simply click the
Install Application button and follow the default prompts. The wizard asks you about which schema you wish to
install the application in and which authentication type you would like to use, and it automatically installs the
selected application and the database objects that support it. If the selected application is already installed, you see
options enabling you to Run, Remove, or Manage the application, as shown in Figure 5-6. The sample applications are
good learning tools for seeing a variety of features implemented very quickly.

57

CHAPTER 5 © APPLICATIONS AND NAVIGATION

All Applications Database Applications Websheet Applications Packaged Applications

Community Requests
Software Development, Community
« Installed

m Remove Manage

Figure 5-6. Run, Remove, and Manage buttons for an installed packaged application

Packaged applications (apart from those that are considered Sample applications) are installed in a locked state
by default so they can’t be edited. If you wish to look at the code, or you want to extend or alter the application, you
can unlock the application by clicking the Manage button. From here you're able to unlock, export, or change the
authentication for the application, as shown in Figure 5-7.

Cancel Next »

Application Name: Community Requests

() Unlock Application
Manage Application: _) Export Application
_) Change Authentication

Figure 5-7. Managing a packaged application

The packaged applications that are provided with 4.2 are quite comprehensive, interesting, and worth taking a
look at for various reasons. In fact, it may save you development time and effort if you're able to use one of these in
your environment with little or no alteration. The sample applications provide very succinct code samples, allowing
you to get more information about specific features of APEX. Together, they provide an excellent resource for learning
more about the APEX programming environment.

Websheet Applications

This book covers websheet application features in chapters 12 and 13. The starting point for creating a websheet
application is the same as for a database application. One of the primary differences is the creation of predefined
database objects that support websheet applications. Another difference is that Application Builder segregates
database applications and websheet applications by using tabs (shown in Figure 5-8) that quickly display the different
types of applications separately.

58

CHAPTER 5 * APPLICATIONS AND NAVIGATION

T Application Builder
All Applications | Database Applications | Websheet Applications | Packaged Applications

Figure 5-8. Choosing between database and websheet applications

Database Applications from Spreadsheets

When creating a database application from the wizard, you're quickly faced with a question: where is your data
coming from? One of the options listed in Figure 5-4 lets you create an application based on data from an existing
spreadsheet. If you choose this option, the Create Application Wizard provides steps for loading data into a

single table and at the same time creates an application that allows you to manage and manipulate that data. The
application is very simple, using a report and form combination such as that shown in Figure 5-9. Creating a
database application from a spreadsheet is a fast and easy way to get from a single-page spreadsheet to a working
online application that can be expanded with additional tools and functionality.

PageE] MName Updated Updated By Page Type User Interface Group Lock Run
1 2 seconds ago admin Home Desktop Unassigned 'h u
2 Insert Form 2 seconds ago admin DML Form Desktop Unassigned 'h u
3 Update Form 2 seconds ago admin DML Form Desktop Unassigned 'h u
4 2 seconds ago admin Static HTML Desktop Unassigned 'h u
101 | Login 3 seconds ago admin Login Desktop Unassigned 'h u

Figure 5-9. The application pages from a spreadsheet application

Database Applications from Scratch

When you create a database application from scratch, the wizard offers many interesting options. You can create any
number of pages and link pages to different tables of data. Additional steps give advanced options that, when planned
for, are very powerful. Creating an application from scratch is the method used in the ticketing application exercise.
Here is what to do to begin the creation process:

1. Navigate to the Application Builder, and click the Create button to initiate the Create
Application Wizard.

2. Select Database as the application type, and click Next.

The following subsections describe the remainder of the creation process in detail. Each subsection contains one
or more subsequent steps in the creation process. Read the descriptions, and follow the steps as described.

59

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 5 © APPLICATIONS AND NAVIGATION

Naming the Application

After selecting the Database application option, you're prompted for details of the application, as shown in Figure 5-10.
The application ID, although automatically created, can be manually set here. Application IDs must be unique across
the entire instance of APEX, so it’s best to leave the ID set to the number APEX has assigned.

(Cancel Create Application Next >

Enter an unique application 10 and an application name and. Then, select a create option, user interface and database schema.
* Application 121
*Name | Help Desk
Schema | APRESS 3
Create Options Include Home Page

User Interface Desktop

Sample Applications
[El Install sample applications

Figure 5-10. Entering the application properties

The Name value is what you use to identify the application inside the builder and is used as the title of the
application. The Schema select list exists for workspaces that have been granted access to more than one database
schema, and it allows you to choose which schema you want your application to use as its “parse as” schema.

The Create Options select list lets you specify how you wish to create the application. The options are as follows:

e Start from Scratch: This option simply takes you to the next step in the wizard, which allows
you to manually create pages.

e Include Home Page: This option automatically creates a blank Home page that acts as the
parent for any other pages you create using the wizard. It also includes a list region that
provides navigation to any of the subpages that are created.

e Use Previously Created Application Design Model: This option allows you to use a previously
created and saved application definition. If a design model is available, this option lets you
skip several steps in the wizard, taking the design model’s defaults for many of the application
property values.

User Interface: This option allows you to select the primary interface for the application.
If the application is being designed primarily for use via standard PC browsers, select
Desktop. If you're creating an application aimed at mobile users, select jQuery Mobile
Smartphone.

At this point, continue with creating your application by entering a name as follows:

3. EnterHelp Desk for the Name, make sure your Schema is set correctly, select Include
Home Page for Create Options, set User Interface to Desktop, and then click Next.

60

CHAPTER 5 ' APPLICATIONS AND NAVIGATION
Laying Out Pages

The next step in the wizard is to decide which pages you need for your application. The wizard requires at least one
page to be created, but Figure 5-11 shows that you have the option to create as many pages as you like.

| (H Cancel | Create Application |

Page Page Name Page Type Source Type Source Delete
1 Home Blank - - x
2 Page Blank x
3 Page3 Blank b4
4 Tickets Report Table TICKETS b4
5 Report Table TICKETS x
6 Iaster Detail — Master Detail ~ Table TICKET DETAILS 4
Add Page Add Page
Select Page Type:
(® Blank (_) Report () Report and Form () Form
o o
—— ——
— ': I—
() Tabular Form () Master Detail () Chart
[O—— [T]
P e o L
= === ===

Action: Add blank page to application

Subordinate to Page Home (1}

Page Name Page 7

X Axis Title

Y Axis Title

Figure 5-11. Multiple pages defined in the Create Application Wizard

The Add Page form at the bottom of this page allows you to define pages of varying types. Each page type calls for
different information to be provided. For instance, adding a report page prompts you to select either a table name or
a query on which to base the report. Choosing a chart requires a chart type and a query for the initial data series.

For now, you'll stick with the blank home page shown in Figure 5-12 and create the rest of the pages later as
needed. Thus, the next step is simple:

4. An application home page has already been created. Accept the defaults on this page, and
click Next.

61

CHAPTER 5 © APPLICATIONS AND NAVIGATION

(Cancel Create Application Next >

Page PageName PageType SourceType Source Delete

1 Home Blank - - x
Add Page Add Page
Select Page Type:
(@ Blank _) Report _) Report and Form _) Form
™ ™
g — i —
= =
_) Tabular Form _) Master Detail _) Chart
[[T .
F—r— [g -
Il = = |l = = >

Action: Add blank page to application
Subordinate to Page Home (1)

Page Name | Page 2

Figure 5-12. The Add Page section of the wizard as it appears for the example application

Copying Shared Components

The next screen asks whether you wish to copy shared components from another application. This comes in handy if
you have a template application that houses components that are shared across applications in the same workspace.
Copying shared components isn’t an advanced procedure, but it does lend itself to a controlled and mature
development process. This feature step in the wizard is a convenience, because the same objects can be copied in
other ways after the application has been created. You don’t need this step, because you're creating an application
from scratch. Skip the step as follows:

5. Select No for Copy Shared Components from Another Application, and click Next.

Application Attributes

The next step in the wizard allows you to set some of the application-level attributes such as the type of authentication
to use, whether to use tabs, and globalization attributes including where to derive the primary language, date formats,
and so on. Let’s look at each of these individually so you can gain a full understanding of the ramifications of each.

Selecting an Authentication Method

With every application, you need to make a choice about authentication, even if that choice is no authentication at all.
This topic is discussed further in Chapter 9. By default, the APEX Create Application Wizard provides three options for
authentication:

e Application Express: Users and passwords are local to the APEX workspace. These users are
managed in the same way the developer accounts are managed inside the APEX workspace,
and users only work inside the current workspace.

62

CHAPTER 5 * APPLICATIONS AND NAVIGATION

e No Authentication: This is like a public web site. Users aren’t prompted for any type of
authentication. This is useful for informational applications where the question
“Who are you?” isn’t important.

e Database Account: This option uses the Oracle Database schema usernames and passwords
for credentials. Some organizations use this type of database-driven authentication to keep
track of users. The application still executes as the chosen “parse as” schema, not as the
individual user in the database.

For simplicity, the default is to use the Application Express authentication scheme. This is the one setting that
provides login security; by default, the developer writing the application can log in without any additional work.

Note Many organizations have an existing method of authenticating users. If an LDAP server is currently available
(such as Oracle Internet Directory, Microsoft Active Directory for network domain authentication, or even an Oracle
E-Business suite), you may want to use this system for APEX authentication. The number of options and methods are
beyond the scope of this book. Simply know that with the Oracle Database technology and the technology of your
application server, it’s possible to use many of the most common authentication infrastructures.

Selecting Tab Options

Tabs are a common navigational structure for web applications. They provide an intuitive interface for switching
subjects or general areas in an application. Three options are available:

e No Tabs: This is a basic page style where no tabs are generated by the wizard and no tabs are
displayed by the page template. This is often selected for small applications or applications
where navigation is managed by a different method such as lists, buttons, or other template
constructs.

e One Level Tabs: This is the most common style of tab layout; it’s useful for small to mid-sized
applications where functionality needs to be separated yet easily accessible. This is also the
easiest type of tab style to manage.

e Two Level Tabs: The construction of two-level tabs uses a parent tab construct and breaks the
standard tabs into tab sets. It’s similar to having a controlling tab.

APEX supports up to two-level tabs in the display templates provided, and the wizard builds the shared
components for the tab set as part of the wizard. If you know your application’s page outline and can lay it out during
the creation of the application, the wizard will do most of the tab setup. Designing the page at creation time can be a
big time saver if the application design calls for a significant number of tabs. In any case, you can create and modify
the shared component after the initial run of the Create Application Wizard.

Globalization Options

The authentication step in the wizard also includes six additional settings, as shown in Figure 5-13. A few of the
settings have to do with the ability to translate the application to other languages. Multilingual applications are
beyond the scope of this book, but for completeness the general usage descriptions of these options are included.

63

CHAPTER 5 © APPLICATIONS AND NAVIGATION

£ Cancel Next)

Authentication Scheme: Application Express +
Tabs: One Level of Tabs
Language: English (en}

User Language Preference Derived From: Application Primary Language

Date Format: | DD-MON-YYYY A

Date Time Format: | DD-MON-YYYY HH:MI:S5| | A~

Timestamp Format: ~
Timestamp Time Zone Format: ~

Figure 5-13. The Attributes page of the Create Application Wizard

These settings are as follows:

e Language: This is the language the application uses by default. It’s also used as the basis for
any internationalization and translation in the case of multilingual applications.

e User Language Preference Derived From: For multilingual applications, this setting determines
how the application derives the translation that is necessary.

e Date Format: This option sets the default of how date elements are formatted within the
application. Different regions of the world have assumptions about how dates are formatted,
especially when they're strictly numeric values. A common format that is used to try to
alleviate this issue is the DD-MON-YYYY format. This style of format makes it clear which
portion represents the day, month, and year (for example, 01-JAN-2010).

e Date Time Format: This option sets the default formats of dates that include a time dimension.

e Timestamp Format: This option specifies the format used for timestamps throughout the
application.

e Timestamp Time Zone Format: This option specifies the format used for timestamps with time
zone data throughout the application.

The wizard uses these settings as starting values. You can alter them as needed in the shared components of
the application.

The language, date format settings, and time zone handling are classified as globalization settings. After the
application is created, you can turn on automatic time zone detection; this setting is found on the Globalization tab
of the Application Settings. Automated time zone detection is especially useful for applications whose users span
different time zones.

Continue creating the example application as follows:

6. Set Authentication Scheme to Application Express, Tabs to One Level of Tabs,

Language to English (en), and User Language Preference Derived From to Application
Primary Language.

7. Choose DD-MON-YYYY for Date Format and DD-MON-YYYY HH:MI:SS for Date Time
Format, and leave the last two options blank.

8. Click Next.

64

CHAPTER 5 * APPLICATIONS AND NAVIGATION

Selecting a Theme

APEX themes are groupings of templates that are used to establish the look and feel of pages, reports, buttons, and
other graphical components. As APEX and web standards evolve, so do the premade themes in APEX. Version 4.2
offers several new theme options, including a number of HTML5/CSS3-compliant themes and a responsive theme,
as well as the legacy themes, some of which have been around for quite a long time.

Although APEX currently comes with 26 themes of varying looks, it’s always possible to customize an existing
theme or to create a completely new theme. The APEX administrator also has the ability to create themes that are
specific to their instance of APEX. Choosing a theme as part of the Create Application Wizard is an easy way to apply
a default theme. As you might expect, you can change your mind later and apply a different theme. Additional themes
can be added, modified, and tested as part of the shared components of APEX.

Figure 5-14 shows the APEX theme chooser. The select list at the top of the region dictates which themes to show.
Your choices are as follows:

o Standard Themes: Shows the six standard built-in themes in APEX 4.2, four of which are
HTML5-compliant themes.

e Custom Themes: Shows any custom themes that have been installed by the workspace or
instance administrator. By default, there are no custom themes.

e Legacy Themes: Shows all the older, table-based themes. Any theme marked with an astrisk (*)
is compatible with Internet Explorer 6.

e All Themes: Shows all available themes across all the previous sets.

|| |
| € || cancel | Next >
J J

Show Standard Themes &

Select atheme:

() Scarlet(Theme 21) (_) Bluejay (Theme 22) _) Uniframe (Theme 23)

Therme 23 - Crimson i e o i

{ :) Cloudy {Theme 24) (_') Blue Responsive (Theme 25) _) Productivity Applications (Theme 26)

Thome 25 L A st Fesstack Bl Semen Riget

mes G et e Gew Tems ma Ga Home Cust | Prot Ovéses Charts Theme

= 5 _— 5|

» Themes

» Compatibility

Figure 5-14. Theme selection

65

CHAPTER 5 © APPLICATIONS AND NAVIGATION

Having reviewed the themes, continue the creation process by choosing the Scarlet theme for your example
application. Follow these steps:

9. Select Standard Themes from the Show select list, and then choose Scarlet (Theme 21)
as the theme for your application.

10. Click Next.

Completing the Create Application Wizard

The last step of the wizard is a simple confirmation dialog. Clicking the Create Application button in Figure 5-15
commits all the settings and generates the application. The Previous button lets you walk backward through the
wizard to make any additional changes before you complete the process.

You have requested pplication with the following attributes. Ple nfirm your selections
Application 123

Mame Help Desk

Parsing Schema APRESS

Default Language en

Tabs One Level of Tabs

Default Authentication Scheme Application Express Authentication
Theme Type Standard

Ul Theme Scarlet

Save this definition as a design model fikreuse

Figure 5-15. Completing the Create Application Wizard

One additional option is available on the last page, at the very bottom: Save This Definition as a Design Model for
Reuse. At the beginning of the wizard, there was an option to reuse a design model. This is the point at which those
design models are created. They're specific to the workspace and can be very useful to set application defaults quickly
when you're running the wizard.

Complete your creation of the example application by executing the final step in the process:

11. Review the wizard’s summary page, and confirm the choices you've made by clicking
Create Application.

You now have a simple application with only two pages, as shown in Figure 5-16. Run that application, and you
should see the login page shown in Figure 5-17. That login page takes your normal APEX developer username and
password, as shown in Figure 5-18.

66

CHAPTER 5 * APPLICATIONS AND NAVIGATION

‘Go

\

Page(a) Name Updated
1 Home Mow
101 Login Mow

Updated By Page Type User Interface Group
Home Deskiop Unassignad
Login Desktop Unassigned

Figure 5-16. Resulting pages for the Help Desk application

Lock Run
= DO
= 0O

. Login

Username |admin

Password sesssssssss

Login

Figure 5-17. Login prompt when running the application

* —

® 06 -'.,ﬁHome

€« C M | [} 192.168.175.132/apex/fp=123:1:10624376181419::::: 7 & =
Help Desk Welcome: ADMIN Logout

| Home |

Home Application 123 Edit Page 1

Create Session Caching ViewDebug Debug Show Edit Links

Figure 5-18. The application after you've logged in

67

CHAPTER 5 © APPLICATIONS AND NAVIGATION

Now that you have the shell of the application created, you can move forward in extending it by adding other
pages, regions, and items.

HTML Regions

The HTML region is one of the most basic and yet most flexible types of region. There are three subtypes of HTML
region, as shown in Figure 5-19:

e HTML: Any HTML tags render as their interpreted value; JavaScript executes as if part of the
page source.

e HTML Text (with Shortcuts): Like the HTML region, with the addition of support for shortcut
technology. This technology includes a shared component object that can be used for
managing a type of variable using SHORTCUT_NAME syntax.

e HTML Text (Escape Special Characters): Shows HTML code as the source value. Example:

 will show up exactly as the code
 rather than being interpreted as a break / return.

£ || cancel Next >

Page: 1-Home
Select the type of HTML region container you wish to create:

(E] HTML HTNL Text (with shortcuts) HTML Text (escape special characters)

B\ () i 2 r“.J'i' V7
ot -3 Sl)

Figure 5-19. HTML region subtypes

With the HTML region’s simplicity comes a wide variety of uses. An HTML region is a container that can have its
own value, embedded JavaScript, or CSS definitions, or it can contain other page items. Any valid HTML entered in
the source renders on an APEX page. Substitution-string syntax, such as &ITEM_NAME ., can also be used to display item
values in the source text.

Continuing with the Help Desk application, add some content to the first page:

1. Navigate to the Application Builder, and Edit the Help Desk application. Depending on
how you're viewing the applications report, you may need to click the Edit button as
shown in Figure 5-20 or click the name of the application as shown in Figure 5-21.

68

CHAPTER 5 * APPLICATIONS AND NAVIGATION

| AnApplications | Database Applications | Websheat Applications | Packaged Applications |

‘ Q- Go ‘ E = I == ‘ Actionél Reset || Import !

Help Desk
10: 123
Database Application

Run || Edit

Edit

Figure 5-20. Edit the Help Desk application

| Q- HH = ‘ | Actions v Create Page)
Page(a] Name Updated Updated By Page Type User Interface Group Lock Run
1 Hou@ 16 minutes ago - Home Desktop Unassigned 'h u
101 | Loaqin 16 minutes ago - Login Desktop Unassianed 'h u

Figure 5-21. Editing the Home page

2. Edit the Home page by clicking the link for the page name in the report.

Note If this is the first time you’ve visited the Page Edit screen, you may be presented with a pop-up dialog that
introduces you to the functionality available on this screen. If this dialog appears, take some time to read its contents.
Once you're satisfied, simply click OK to dismiss it. You can always view the contents of this dialog again by clicking the
Utilities button and selecting Using the Tree View from the list of options.

3. Inthe upper-right corner of the screen, click the Create button and select Region on This
Page to start the Create Region Wizard.

4. Select HTML as the type of region to create, and click Next.
5. Ofthe three subtypes of HTML region, select the HTML region subtype, and click Next.

6. SetTitle to APEX Issue Tracker, as shown in Figure 5-22, leave the rest of the options at
their defaults, and click Next.

69

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 5 © APPLICATIONS AND NAVIGATION

(Cancel Create Region Next >

Page: 1-Home
Region Source Type: HTML Text

*Title | APEX Issue Tracker

Region Template | Reports Region

Parent Region - Select a Parent - #
Display Point Page Template Body (3} + &
[Body] [Pos.1] [Pos.2] [Pos.3] [Pos.4] [Pos.5]

* Sequence | 20

» Top Region Templates

Figure 5-22. Setting the region display attributes
7. Enter the following in the Enter HTML Text Region Source text box, and click Create
Region. See Figure 5-23.

<h1>Welcome to the APEX Issue Tracking System</h1>

Select an option from the list

(Cancel Create Region Next >

Enter HTML Text Region Souroe:

<hl=Welcome to the APEX Issue Tracking System</hl>
«<br/s»Select an option from the list

» Items

» HTML Example
Figure 5-23. Entering the HTML text to be displayed

Run the page by clicking the Run button at the top of the edit page. You should see the changes you just made
indicated by a region with a friendly welcome message. Your results should be similar to those shown in Figure 5-24.

70

CHAPTER 5 © APPLICATIONS AND NAVIGATION

Help Desk Welcome: ADMIN Logout

Home

APEX Issue Tracker

Welcome to the APEX Issue Tracking System

Select an option from the list.

Figure 5-24. Results after adding the static HTML region

Public Pages

As mentioned, it’s possible to allow the entire application to use no authentication scheme. But what if you want some
of the pages to require authentication, and the rest to be public? How can you make a page that doesn’t require a login
in order to view it?

If any of the pages in an application require authentication, an appropriate authentication scheme must be
applied to the whole application. APEX lets you define individual pages as Public or Requires Authentication using
a defining property of the page. Each page can have different security requirements (authorization), but only one
authentication mechanism can be applied to an application. Public pages are useful for introductory landing pages,
login pages, and information pages.

In the Help Desk project, you want to have the main page available to all visitors. To accomplish this, you can
modify the first page of the application to allow it to be seen by anyone without requiring authentication. Do that via
the following steps:

1. Inthe Help Desk application, navigate to and edit page 1.

2. From the Page Edit view, edit the page attributes by double-clicking the page
name (Home). The page name appears as the root of the tree in the Page Rendering
region, as shown in Figure 5-25.

71

CHAPTER 5 © APPLICATIONS AND NAVIGATION

Page Rendering +

20 Honge,
H Before
H After Hboos
{| Before Regions
-I Regions
B Body (3)
. [] APEXIssue Tracker
B Position 01
i srs Breadcrumbs
After Regions
Before Footer
After Footer
- Dynamic Actions

el bl fb
T+

e
(k{4

Figure 5-25. Editing the page attributes

3. Scroll to the Security section, shown in Figure 5-26. In this section, change Authentication
to Page Is Public.

Security A

Authorization Scheme - No Page Authorization Required -

Authentication « Page Requires Authentication

Page Is Public

Deep Linking rmpﬁntmn‘mm—:\—
Page Access Protection Unrestricted
Farm Auto Complete On =

Browser Cache Application Default

Figure 5-26. Changing a page’s authentication setting

4. Scroll to the top of the page, and click Apply Changes.

Now, when the page is run, the authentication screen doesn’t appear when page 1 is requested. You learn more
about authentication and authorization in Chapter 9. For now, just know that the change you've made allows users to
see the first page of the application without being logged in.

72

CHAPTER 5 * APPLICATIONS AND NAVIGATION

Navigation Bar Entries

Each APEX application has one navigation bar that may contain multiple entries. Examples of links typically displayed
on every page are Login, Logout, Help, and My Account. As a developer, you can create and modify navigation bar
entries depending on the application and need. The navigation bar can also go beyond standard link text; it can be
modified to include images. Entries can be based on conditions, authorization schemes, and build options. Placement
of navigation bars is dictated by the page template substitution variable #NAVIGATION_BAR#. In most applications,
the navigation bar is placed either at upper right or upper left on the page.

The example application already has a very simple navigation bar that has been created for you, as shown in
Figure 5-27. It currently contains only a simple welcome message and a Logout link.

Welcome: ADMIN Logout

Figure 5-27. Icons on a navigation bar

Because you've modified the home page to be a publicly viewable page, you need to add a navigation bar entry
that allows a user to log in. At the same time, you need to make both the Login and Logout links context sensitive so
they’re only displayed when it makes sense. (For instance, the Logout link should only be displayed when a user is
actually logged in.)

Navigation bars are part of an application’s shared components, so they’re created and maintained from the
Shared Components section of the Application Builder. Create one in the example application as follows:

1. Navigate to the Application Builder home page for the Help Desk application. This is the
page that shows a list of all the pages in the application.

2. Navigate to the Shared Components section of the Application Builder, either by clicking
the large Shared Components icon at the top of the page or by clicking the gear icon in the
builder utility bar in the upper-right section of the page.

3. Under Navigation, click Navigation Bar Entries, as shown in Figure 5-28. You see that
APEX has already created a Logout entry for you, but you need to create your own Login
link.

Navigation

rumbs

B Mavigation %Entries

Figure 5-28. Navigation items in the Shared Components screen

73

CHAPTER 5 APPLICATIONS AND NAVIGATION

4. Click Create.

5. Select the From Scratch option shown in Figure 5-29, and click Next.

‘ Cancel ‘ Next >

You can create Mavigation Bar Entries from scratch, or by copying them from another application. Copying Navigation Bar Entries provides you with a framework that you can
modify

Create Navigation Bar Entry:
(*) From Scratch
‘ :) As a Copy of an Existing Navigation Bar

Figure 5-29. Navigation bar creation

6. Select Navigation to URL, as shown in Figure 5-30. Then click Next.

‘ 4 H Cancel | Next >

Select Navigation Bar Entry Type:

(&) Navigation to URL () Fesdback

Figure 5-30. Navigation bar entry creation

7. Enter Login in the Entry Label field and Login in the Image ALT field, as shown in Figure 5-31.

‘ 4 H Cancel | Next >

* Sequence | 10

Entry Label Login

Icon Image Name e

Image ALT ‘ Login|

Image Height Width

> Existing Navigation Bar Entries

> About

Figure 5-31. Navigation bar settings

74

CHAPTER 5 * APPLICATIONS AND NAVIGATION

8. Click Next.

9. SetTargetIs A to Page in This Application, as shown in Figure 5-32.

£ || cancel Next »

Application: 123
AltTag Login
Targetisa Page in this Application *
*Page [101] =
reset pagination for this page

Printer Friendly

Request
Clear Cache (comma separated page numbers)
Set these items @ (comma separated name list)
With these values @ (comma separated value list)
* URL Target

» Existing Navigation Bar Entry Targets
Figure 5-32. Specifying the target page

10. For Page, enter 101. This will send the user back to the login page after they've logged out.
11. Click Next.

12. Set Condition Type to User is the Public User (user has not authenticated), as shown in
Figure 5-33.

Condition Type

| User is the Public User (user has not authenticated) :)

[PL/SQL] [item / column=value] [tem / column nct null] [itemn / column null] [request=e1] [page in] [page not in] [exists] [never] [none]

> About Navigation Bar Entries

Figure 5-33. Navigation bar conditions

13. Click Create.

Run the application now. If you're logged in, you only see the Logout navigation bar entry. Click the Logout link.
Once you're logged out, you see the new navigation item, as shown in Figure 5-34. This identifies a small problem:
the Logout link can still be seen even though you've already logged out.

75

CHAPTER 5 © APPLICATIONS AND NAVIGATION

Login Logout

Figure 5-34. Login and Logout buttons

Clearly it’s a problem to show the Login and Logout choices at the same time. After all, only one of those two
choices can apply. Let’s tackle that problem:

1. Navigate back to the Shared Components section for the Help Desk application.
2. Edit Navigation Bar Entries, and edit the Logout item.

3. Inthe Conditions section of the page, set Condition Type to User is Authenticated
(not public), as shown in Figure 5-35.

Conditions A

Condition Type
User is Authenticated (not public)

[PL/SOL] [itemn / column=value] [item / column not null] [item / column null] [request=el1] [page in] [page not in] [exists] [never] [none]

Figure 5-35. Navigation bar condition type

4. Click Apply Changes.

Run the application again. You should see that the Login and Logout navigation items are mutually exclusive.
When you created the new navigation item, you applied the condition to allow it to be seen only by the public user.
The Logout navigation item was created as part of the Create Application Wizard; no condition was placed on the
Logout item by default. You learn more about conditions in Chapter 8.

Global Pages

A Global Page is a special type of page that acts as a “master page” for your application and can be added one per user
interface type (that is, you may have one Global Page for the desktop UI and another for the mobile UT).

Items placed on a Global Page are rendered on every page in its related UI for that application unless
conditionally told to do otherwise. This is particularly useful when you identify the need to display the same region on
multiple pages or even on all pages in your application. Simply move a region to your Global Page, and it’s rendered
with every page.

A good example of usage is a breadcrumb region or a region that contains custom JavaScript code that needs to
be available to every page. Region contents from a Global Page are included on every page of that Ul, even when a
region doesn’t render visibly.

Although you can assign any page number to a Global Page, the default page number for a Global Page related
to a desktop interface is zero (0). In fact, Global Pages take the place of what used to be called Page Zero in previous
versions of APEX.

76

CHAPTER 5 * APPLICATIONS AND NAVIGATION

You may notice when looking at the definition of a Global Page in the APEX page editor (Figure 5-36) that there
is no Page Processing section. Global Pages are only used during page rendering. Regions that are added to a Global
Page are included even on the Login page. You need to consider the different page types in an application when

adding content to a Global Page.

A == e ADMIN
0 ‘2| Co || < | > ||== Run Application | Utilities » H Create v | DrTineTe

=+ Shared Components =+

Page Rendering
[& Parent Tabs
i T Listof Values
o Breadcrumbs

= [Global Page - Desktop
After Header

;. Before Regions

Regions

Before Footer @ Templates
i Dynamic Actions w [Security

Figure 5-36. A Global Page for a desktop interface, as shown in the APEX page editor

Caution
items don’t execute.

Although the APEX Builder lets you add calculations, validations, and processes to a Global Page, these

Creating a Global Page is like creating any other page in an APEX application. However, once it’s created, it’s no
longer available in the Creation Options list for that UI type. Let’s create a Global Page for the desktop interface:

1. From the application page list, click the Create Page button.

2. Select Global Page from the Page Type list. Figure 5-37 shows the Global Page option,
which should be near the bottom of the list.

() Login Page () Access Control (=) Global Page
——
—
T
a 4-)—14-')_1'!-)_]

W

Figure 5-37. Choosing to create a Global Page
77

CHAPTER 5 © APPLICATIONS AND NAVIGATION

3. Leave Page Number set to 0 (zero), and click Finish.

You should now see your Global Page listed in the pages for the application. Currently there is no content on the
Global Page. You use this Global Page to contain and display the breadcrumb region in the next section.

Breadcrumb Regions

Breadcrumbs are a popular navigation structure. They give the user a quick and intuitive representation of the current
navigation path with optional functionality to navigate back using the structure. Oracle Application Express uses the
structure in the builder shown in Figure 5-38.

1 Application Builder Application 123 Page 0 Create Region

Figure 5-38. Example of breadcrumbs in the Application Builder

In APEX, breadcrumbs are a declarative structure with built-in behavior. They're managed as shared components
and have their own region type and template. When you ran the Create Application Wizard, the pages that the wizard
created automatically included a region to contain the breadcrumbs. Figure 5-39 shows the Breadcrumbs region in
Position 01 of the page.

Page Rendering

= [j Home
fl Before Header
After Headar
Before Regions
Regions
B Body (3)
. L[] APEXIssue Tracker
= Position 01
L. avs Breadcrumbs
[+ After Regions
[+ Before Footer
[After Footer
- Dynamic Actions

A

Figure 5-39. The Breadcrumbs position in the page-rendering hierarchy

78

CHAPTER 5 * APPLICATIONS AND NAVIGATION

When you're creating new pages of an application, the Create Page wizard has an option to assist in creating
new breadcrumb entries. When you use this option, child pages receive a copy of the breadcrumb region from the
parent as well as an automatic entry in the Breadcrumb group. When a breadcrumb region doesn’t exist, nothing is
copied, but the entry in the breadcrumb shared component is still created. An issue with this approach is that if you
need to make any changes to the region’s display or other layout considerations, they have to be done on every page
that contains a breadcrumb region. Adding the region to a Global Page to make it appear on all pages can be helpful,
because it gives you one point of change instead of many.

Continuing the Help Desk application, the design is to have a breadcrumb region appear on all pages. It isn’t
necessary to re-create the region manually. Because the Create Application Wizard created the region for you, you can
use the Copy Region feature in APEX to duplicate the region to your Global Page. Do the following:

1. Navigate to the Page 1 edit screen.

2. Right-click the Breadcrumbs region in the tree to show the context menu, as shown
in Figure 5-40.

Page Rendering
2 [J Home
[H Before Header
H After Header
[Before Regions
B Regions
B Body (3)
¢ L[] APEXI|ssue Tracker
B Position 01

= Breadcrumbs
[After B Edit

[Beforg Edit Breadcrumb
[+ After F
.. Dynan Greate

Create Page Item
Create Page Item Button
Create Region Button
Create Dynamic Action
Create Sub Region
Copy

Rename

Expand All

Collapse All

Figure 5-40. Context menu for the Breadcrumbs region

3. Select the Copy option.

4. Change the page number for the new region to 0, as shown in Figure 5-41, and click Next.

79

CHAPTER 5 © APPLICATIONS AND NAVIGATION

(|| Cancel

Next >

Identify page for new region

*ToPage |0

» Copy From Region

> Recently Edited Pages

Figure 5-41. Setting the destination page

The Copy wizard allows modification of what is copied in a limited fashion. Options that don’t apply are disabled.
In the current example, you could modify the region name and sequence as well as some display placement options.
For now, leave them with their default values:

5. Confirm the settings shown in Figure 5-42. Click Copy Region to complete the wizard.

(Cancel
Copy From Page:
Gopy To Page:
Copy Region Items:
Copy Buttons:
Copy Validations:
Copy Processes:
Copy Sub Regions:

* Region Name

* Sequence

~ Advanced

Parent Region

* Display Point

Copy Region

1. Home

0. Global Page - Desktop
No

No

No

No

No

Breadcrumbs

10

- Select a Parent -+

Page Template Region Position 1 =

Figure 5-42. Confirming the copy operation

Reviewing the change in the editor, notice that the Global Page now has the new breadcrumb region, but the
original breadcrumb region still remains on page 1. Running the application, you see the two breadcrumb regions
shown in Figure 5-43. Note that the Copy feature doesn’t remove the existing breadcrumb region.

80

CHAPTER 5

Help Desk

Home
L3
Home

APEX Issue Tracker

Welcome to the APEX Issue Tracking System

Select an option from the list

Figure 5-43. Redundant breadcrumb regions

To correct this duplication, do the following:
1. EditPagel.

2. Double-click the Breadcrumbs region name in the tree.

APPLICATIONS AND NAVIGATION

3. Click the Delete button at the top of the Region Definition, as shown in Figure 5-44.

Region Definition

coc | e |
Region: 1 of 2 Name: Breadcrumbs S " -

Figure 5-44. Preparing to delete a redundant breadcrumb region

4. Click the Delete Region button to confirm, as shown in Figure 5-45.

<[>

Cancel Delete Region

Region: Breadcrumbs
Page: 1 Home

Application: 123 Help Desk

Figure 5-45. Confirming deletion

Now, re-test the application. You should just see the Global Page version of the breadcrumbs region, as shown

in Figure 5-46.

81

CHAPTER 5 © APPLICATIONS AND NAVIGATION

Help Desk
Home

APEX Issue Tracker

Welcome to the APEX Issue Tracking System

Select an option from the list.

Figure 5-46. Completed migration of the breadcrumb region to the Global Page

Effectively, you have moved the management of the breadcrumb region to the Global Page. Any settings changes
to that region done on the Global Page are seen on all pages of the application without requiring any additional work.

Breadcrumb Entries

As additional pages are added to the application, the page-creation wizard prompts for optional breadcrumb settings.
If they weren't set at the time the page was created or they need to be modified from their existing settings, you can
modify the data that drives the breadcrumbs in the Shared Components section of the application.

It’s possible to have several breadcrumbs in one application. A default breadcrumb with the name Breadcrumb is
created as part of the APEX Create Application Wizard. This is the name of the grouping of breadcrumb entries.
APEX provides some utilities to see where breadcrumbs are used and easy methods of editing entries.

To see the breadcrumb groups created, navigate to the Shared Components section and click the Breadcrumbs
option in the Navigation section. Figure 5-47 shows the main screen for listing the different breadcrumb groups.

Breadcrumbs Hierarchy Grid Edit Exceptions Utilization History

Q- Go = Actions v Reset Create Breadcrumb)

aBe

Breadcrumb

Figure 5-47. Breadcrumb groups available in the application
Clicking the group name displays the detailed entries in that group, as shown in Figure 5-48. The entries can be

modified independently here. As an application becomes larger, you may need to arrange the entries into different
breadcrumb groups.

82

CHAPTER 5 * APPLICATIONS AND NAVIGATION

Edit Breadcrumb Name

Q- Co Actions w Create Breadcrumb Entry)

Name Sequence Page Parent Page Exists Authorization Scheme Page Authorization Scheme

Breadcrumb | Breadcrumb + | Name or Target Page Set

_/ Home 10 1 (nully Yes (nully (nully

Figure 5-48. Detail of entries in a breadcrumb group

Lists

As the name implies, a list is a structure that APEX uses to keep a collection of data for links. The list structure allows
menus to be displayed consistently across numerous application pages, with easy maintenance in the Shared
Components area of an application. Don’t confuse navigation lists with lists of values (LOVSs). Lists are a navigational
structure with built-in templates for displaying information in different ways. LOVs are used to support data entry,
limiting the options a user can enter.

List templates have a lot of capability. They support hierarchical lists, graphical bullets, dynamic HTML, and
highlighting for the current page. Lists can contain data in a parent-child relationship; some list templates are
specifically designed to display parent-child data. APEX standard themes contain varying templates available for lists,
but if the behavior you're looking for isn’t already available, it’s possible to modify or create your own list template to
display and behave as desired.

The Help Desk application needs some lists to help users navigate to some key features. You're going to create
entries in the list for pages that don’t exist yet, but you'll create those pages in the next few chapters. Here’s the process
to follow:

1. Navigate to the Shared Components section for your application.

2. Locate and click the Lists entry under Navigation.

3. Nolists currently exist. Click the Create button shown in Figure 5-49.

Lists | List Details Conditional Entries History

Q- Co EE Actions Reset Copy m

No lists found.

Figure 5-49. The Lists maintenance screen

4. Choose to create a list From Scratch, and click Next.

5. EnterHome Page List asthe List Name.

83

CHAPTER 5 © APPLICATIONS AND NAVIGATION

There are two types of lists: static and dynamic. Static lists are made up of list items that aren’t data driven but are
instead entered at design time by the developer. Dynamic lists are data based, and the values returned into the list
are based on a SQL query. Use a static list to create a navigation menu between the three public pages on your site:

6. Select Static for List Type, and leave Build Option at its default. Click Next.

On the next screen of the wizard, you can enter up to five list entries and the pages or target URLSs. But this
quick-entry screen doesn’t allow you to enter all the options you need, so skip it:

7. Leave the list entries blank, and click Next.

As with most other wizards, the final screen allows you to confirm your choices. This confirmation screen also
lets you choose whether to create a list region in your application and, if so, where. The options are as follows:

e Don’t Create List Region(s): No list region is created, leaving you to create it manually.

e Create List Region on Current Page: A list region is created on the most recently edited page.
You can see which page is current by looking near the Application Builder utility bar at the
upper right. The current page number is displayed there.

e Create List Region for Each Target Page: A separate list region is created on every page
mentioned in the list entries that you entered on the previous page.

You want to have complete control over where you put the list region, so choose not to create a list region at
this time:

8. Make sure the Create List Regions select list is set to Do Not Create List Region(s), and
click the Create List button, as shown in Figure 5-50.

List Name: Home Page List

Create List Regions? Do not create list region(s)

List Entry Label Target Page ID or custom URL

Figure 5-50. Choose not to create a list region

Under the List shared component, you should now see Home Page List as an entry. In the next steps, you add list
entry values to support the application design:

1. Begin by navigating to the previously created Home Page List.

2. Click the tab at the top of the region to view the List Details report shown in Figure 5-51.

84

CHAPTER 5 * APPLICATIONS AND NAVIGATION

i Lists | List Details | Unused | Conditional Entries | Utilization | History |

— ‘ Reset ‘ ‘ Grid Edit ‘ ‘ Edit List ‘ Create List Entry)
List | Home Page List +

‘Q' Co | ‘ Actions |

No data found.
Figure 5-51. Entries by list view confirmation screen

3. Click the Create List Entry button.

4. The resulting dialogs present all the options available for a list entry. A lot of functionality
is built into the Lists structure. The key items you're interested in are shown in Table 5-1.
Fill out the dialogs shown in Figures 5-52 and 5-53 using the values from Table 5-1.

Table 5-1. Values to Use for the First List Entry

Section Value Entry

Entry Sequence 10

List Entry Label Submit a Ticket
Target Page 2

Clear Cache 2

Entry A

List: Home Page List

Sequence 10
Image i
Attributes -
Alt Attribute

* List Entry Label
Submit a Ticket|

Figure 5-52. Choosing a parent list entry

85

CHAPTER 5 © APPLICATIONS AND NAVIGATION

Target

Target type Page in this Application *
“Page |2 7

reset pagination for this page

Printer Friendly
Request
Clear Cache |2
Set these items «
With these values %
URL Target

Figure 5-53. Target definition

5. Once you've finished your entries for the first list item, scroll to the top of the page and
click the Create and Create Another button. This brings you back to the same page and
allows you to add another list entry. Use the information in Table 5-2 to create the second

list entry.

Table 5-2. Values to Use in the Second List Entry

Section Value Entry
Entry Sequence 20

List Entry Label Contact Us
Target Page 3

Clear Cache 3

6. Click Create List Entry to save your changes.

You should now have a Shared Components list with two entries in it, as shown in Figure 5-54. The List Details
tab shows some important information in a single view. The Sequence value identifies the order in which the items
are listed when using an unordered list type. Some list types are classified as ordered, in which case they’re sort by
name alphabetically. The Target value is the construction of a URL that includes the page to navigate to as well as a
clear-cache instruction. Several of the declarative forms construct a URL based on the inputs provided in the same

way as the list entry.

86

Lists List Details Unused Conditional Entries Litilization History |

CHAPTER 5 * APPLICATIONS AND NAVIGATION

Edit List Create List Entry >

Level Authorization Scheme Copy

Reset Grid Edit
ListifbomaRngad sis)
Q- Go Actions v
Sequence(a] Name Parent Entry Target Conditional Updated
10 Submit 1 :Scands 1
a Ticket p=&APP_ID..2:&5ESSION.:&DEBUG.:2::: ago
Contact 7 w
20| g 5 p=8APP_|D.3:3SESSION.&DEBUG. 31 Now)

Figure 5-54. List entries at a glance

List Regions

A list as a shared component doesn’t display in an application directly. A list region must be configured on a page
in order for the list to be seen by the user. APEX has a template type defined specifically to support lists. The list
templates contain all the intelligence required for dynamic lists and options for display. When you're creating a list
region, the template choice can be set, and it can be modified through the region settings.

Now that you've created your list, you need to include it on your Home page and subsequent application pages.

You accomplish this by adding a region to your Global Page:

1. Navigate to the Global Page edit screen.

2. Use the Create button to create a Region on this page, as shown in Figure 5-55.

Run Application Utilities v Create v

MNew page

Page control on this page
Shared component

Bug

To Do

Comment
Security

Figure 5-55. Creating a new region

3. Select the LIST region type, and click Next.

4. Inthe Display Attributes step of the wizard shown in Figure 5-56, set the attributes as

shown in Table 5-3.

87

CHAPTER 5 © APPLICATIONS AND NAVIGATION

€ || cancel Next)

Page: 0 - Global Page - Desktop
Region Source Type: LIST
*Title | Actions

Region Template Sidebar Region, Alternative 1

Parent Region - Select a Parent - *

Display Point | page Template Region Position 3+ |$

[Body] [Pos.1] [Pos.2] [Pos.3] [Pos.4] [Pos.5)

* Sequence | 20

» Top Region Templates

Figure 5-56. Creating region actions for a list

Table 5-3. Display Attributes for the List Region

Attribute Value

Title Actions

Region Template Sidebar Region, Alternative 1
Display Point Page Template Region Position 3

5. Click Next.

6. Choose Home Page List for the List to display, and choose Vertical Unordered Lists with
Bullets for List Template, as shown in Figure 5-57.

(Cancel Create List Region Next »

*List | Home Page List * |

* List Template wertical Unordered List with Bullets

»> Recently Created or Edited Lists

Figure 5-57. Selecting the list to be used in the region

7. Click Next.

You could stop now, end the wizard, and have your display region. But you really don’t want your navigation links
to display on each and every page. Specifically, you don’t want them to display on the login page.

In this instance, you can create a display condition for the lists region. In your application, the login screen is
page number 101. The remainder of the public pages that you create will have page numbers less than 100. You can
set up a PL/SQL condition that evaluates the page number and returns TRUE when the page ID is less than 100.

88

CHAPTER 5 * APPLICATIONS AND NAVIGATION

The page number can be referenced using the substitution variable : APP_PAGE_ID. The condition enables the display

of your list region only on the non-login pages:
8. Set Condition Type to PL/SQL Function Body Returning a Boolean.
9. Set Expression 1 to the following code:
IF :APP_PAGE_ID <100 THEN
RETURN TRUE;
ELSE

RETURN FALSE;
END IF;

10. Validate your entries against Figure 5-58, and click Create Region.

L4 Cancel Create Region

Page: 0 - Global Page - Desktop
Region Title: Actions

Condition Type
PL/SQL Function Body Returning a Boolean

[PL/SQL] [item [column=value] [tem / column not null] [tem / column null] [request=e1] [page in] [page not in] [exists] [never| [none]

Expression 1

IF :APP_PAGE_ID <18@ THEN
RETURN TRUE;

ELSE

RETURN FALSE;

END IF;

Do not validate code (parse code at runtime only).

Autharization Scheme 3
- No Security Check Reguired - +

Figure 5-58. Specifying a conditional display option for a list region

Running your application now should result in the action list you created appearing on the right side of the

screen (Figure 5-59). Clicking either link causes the application to prompt for authentication. After you log in, clicking
a link generates an application error. This is expected: you've asked the application to link to pages that don’t exist yet.

Actions

» Submit a Ticket
» Contact Us

Figure 5-59. Application page with an action list

89

CHAPTER 5 © APPLICATIONS AND NAVIGATION

Limiting the display of the region to non-login pages is just a small example of what you can do with
conditions. The full capabilities of the Oracle PL/SQL engine are available for conditional logic on many of the APEX
components. Conditional logic can be very complex and comprehensive using combinations of functions, packages,
and SQL. It's recommended that you spend some time strategizing an approach to display conditions and security
functions when designing a complex application. If the same conditional logic will be used repeatedly, it may be a
good idea to create a utility package with functions to be called in several places. Thus, maintenance of the logic can
be done in a single place.

Template Positions

In the previous section, you chose Region Position 3 when selecting the location of the region. This location was
based on knowledge of the theme and template you chose at the beginning of the example application. When you're
working with another theme, it may be desirable to see where the regions are placed. APEX has a utility that displays
approximate region placement and allows quick selection of display points.

To get a preview of display points in a page template, follow these steps:

1. Navigate to the edit screen of any region.
2. Inthe User Interface section, locate the Display Point.

3. Click the flashlight to the right of the drop-down, as shown in Figure 5-60.

Display Paint Page Template Body (3] - i?

[Body] [Pos.1] [Pos 2] [Pos.3] [Pos.4] [Pos.tFiNd display point in page template

Figure 5-60. Location of the display point flashlight
4. In the resulting pop-up window shown in Figure 5-61, click the name of a display position.

Be aware that the positions are specific to the page template. There can be more than one
page template per application.

90

CHAPTER 5 © APPLICATIONS AND NAVIGATION

]

806 Region Display Point =
] 192.168.175.132/apex/f?p=4000:74:4121208596600:::74:F4000_P74_PAS...

After Header

#LOGO# "ru'clcan‘c:ADMIN

Region Positio Region Position8

Region Position?

#TAB_CELLS#

Region Position1

Region Positiond

Region Position2 Region
Paosition3
Page Template Body (1)
Page Template Body (2}
Page Template Body (3)
Before Footer
#APP_VERSION#

Region Positions

#DEVELOPER_TOOLBAR#

Figure 5-61. Resulting region positions available on the current page template

5. Close the pop-up window to prevent any changes from being saved.

This feature provides a visual representation of region positions to help you better understand where your
content will be displayed and how it will interact with other regions on the page. This feature is also very useful for
understanding how a template may need to be modified in order to support an application.

Lists of Values

One of the fundamental benefits of writing an application on top of a database architecture is the ability to enforce
data quality. LOVs are an APEX component that can be mapped to different item types including Select Lists, Multiple
Select Lists, Checkboxes, and Radio Groups. These types of structures help ensure that data collected through
transactions is consistent. There are two types of LOVs in APEX:

e Static: A setlist of options in APEX

e Dynamic: Based on SQL against the database

91

CHAPTER 5 © APPLICATIONS AND NAVIGATION

LOVs can be defined either as shared components at the application level or at the item level. Figure 5-62 shows
an item-level definition. An LOV used more than once should be written as a shared component. This allows the
maintenance of that LOV to be centrally located with the shared components. If an LOV is created at the item level,
it’s easy to convert it to a shared LOV by using a utility that APEX provides. When you view a component with an
item-level LOV; the page contains a Tasks menu with the Convert LOV option. Choosing this option makes the LOV a
shared component.

List of Values A check box, or a select list.

Named LOV | - Select Named LOV - % Return To Page

Display Extra Values Yes
Tasks
Display Null Value Yes &

Convert LOV

Null Display Value Null Return Value
Unsubscribe Templates
Cascading LOV Parent Item(s) ~
List of values definition Page Items

STATIC2:1,2,3,4,5,6,7,8,9
P1.X

Create or edit static List of Values Create Dynamic List of Values

List of Values Examples

Figure 5-62. An item-level LOV with static options

Static List of Values

A static list of values is simply a set of display and return value pairs. This type of list is normally short and
unchanging. When you define a static list of values at the item level, there are two types of data options:

e STATIC: Entries are automatically alphabetized.
e STATIC2: Entries render in the order in which they're entered.
The syntax for specifying a static LOV is as follows:
TYPE:DISPLAY;RETURN,DISPLAY;RETURN,...
The TYPE may be either STATIC or STATIC2.

If you wish the display value and the return value for a given entry to be the same, omit the semicolon and specify
only one value. For example, the second item in the following example is a single value for both display and return:

TYPE: VALUE,VALUE,VALUE,...

The return value in a LOV is saved as the value of the associated form item. In static lists, using the semicolon as the
value of an entry may cause issues with parsing the list.

The following is an example of a static list. Commas separate the list items. Each list item is composed of a display

value and a return value, with a semicolon separating those two values:

STATIC:C;1,A;2,D;3,B;4,

92

CHAPTER 5 * APPLICATIONS AND NAVIGATION

When you display the values in this list, you see only the display values. Because the list is type STATIC, the values
are displayed in alphabetical order:

O N >

Next is an example of a STATIC2 list. Notice that the entries are specified in the same order as before:
STATIC2:C;1,A;2,D;3,B;4,

However, this time the values are displayed in their order of definition. They are not sorted alphabetically:

O >N

Shared-component static LOVs have more options than item-level static LOVs. Due to their shared nature,
conditions and build option can be configured. These can be edited after the list has been created. Because the lists
are stored differently as shared components, it’s possible to use a semicolon in the item value.

Dynamic List of Values

As with static LOVs, dynamic LOVs have a display and return value pair requirement. The difference is that the values
are obtained through a SQL query. The SQL query you write must return two columns. If the columns are the same,
you need to use aliases to distinguish a display value and a return value. You must also use an alias if you're using a
concatenated string as a column. Dynamic LOVs can also use session variables or values currently being used in the
application. This gives dynamic LOVs flexibility to dynamically change what is offered during runtime.

The example application needs two LOVs to support the selection of usernames. In preparation for building your
form pages, create a LOV to support the names of the users and the technicians in your Help Desk system:

1. Navigate to the Shared Components section of the Help Desk application, then go to the
User Interface section shown in Figure 5-63, and click the Lists of Values link.

User Interface

User Interface Attributes
/ﬁ & Themes

Templates
H Lists of Values
£2 Shortcuts
9k Plug-ins

[F] Component Settings

Figure 5-63. User Interface options

93

CHAPTER 5 © APPLICATIONS AND NAVIGATION

2. Click the Create button to create a new LOV.

3. Choose From Scratch as the method of creating your LOV, as shown in Figure 5-64.

Cancel Next)

A List of Values is a static or dynamic definition used to display a specific type of page item, such as popup lists of values, a select list, a check box, a radio group, or multiple
select lists.

Create List of Values:
(=) From Scratch
() AsaCopy of an Existing List of Values

Figure 5-64. Creating a LOV from scratch

4. Click Next.

5. Enter TECHS as the Name value and choose Static as the Type, as shown in Figure 5-65.

(I Cancel Next)

Static lists are based on predefined pairs of display and return values. Dynamic lists are based on a SQL query you write that selects values from a table
*Name | TECHS

Type: (#) Static
() Dynamic

Figure 5-65. Specifying a list as static

6. Click Next.

7. Enter the values shown in Table 5-4 into the form. Add your own name to the list!

Table 5-4. Display Attributes for the LOV

Display Value Return Value
Scott SCOTT

Doug DOUG

Karen KAREN
Martin MARTIN
Patrick PATRICK

Tim TIM

(Your Name) (YOUR NAME)

8. Click Create List of Values when you're finished.

94

CHAPTER 5 * APPLICATIONS AND NAVIGATION

Now that you've created a static LOV, let’s include a second one that uses a SQL query to derive the list of values:
9. Repeat steps 1 through 4.
10. Create a second list named USERS, selecting the Dynamic option. Click Next.

11. Locate the book supplemental file ch5_lov.txt that includes the SQL query text. Enter the
SQL query for the LOV source.

12. Click Create List of Values

You should now have two LOVs. Don’t worry if you made a mistake. All the settings can be modified—simply click
the name of the LOV you want to modify.

Summary

In this chapter, you created the basic shell of an application and several of the supporting objects that you use in

the upcoming chapters. These items have been created as a result of planning that was done prior to starting the
application. Depending on your situation, the amount of planning you do for your own application may vary. The
shared components outlined here can be created at any time as needed during the development process. In the next
section you start using some of the key structures outlined here.

95

CHAPTER 6

Forms and Reports—The Basics

Now that you have the database objects and the base application in place, you can get to the real work of building
pages in your application. Most applications contain a series of forms, reports, charts, and other elements designed to
display, edit, and collect data.

This chapter focuses on basic forms and reports. These are the simplest, most standard types of forms and
reports in APEX. They're most often created by using the APEX wizards, which create all the elements of a form or
report for you.

In the sections that follow, you learn how to use the APEX wizards to add pages to your Help Desk application.
You create some basic forms and reports on the Tickets table; you also look at the elements created by the wizards for
your working forms and reports.

APEX Forms

Forms are used to display, edit, and collect data, which is then sent back to the database for processing. Forms can
interface with tables, views (via “instead of” triggers), procedures, and web services.

An APEX form is actually a collection of APEX objects acting together as a single, cohesive unit to perform insert,
update, and delete operations on data elements. An APEX form generally consists of a region, one or more items,
one or more buttons, and one or more processes that handle interactions with the database. The APEX form wizards
create all the objects necessary for a fully operational form.

Note Once a form is generated, the objects in it aren’t logically associated in any way except that they collectively
make a complete working form. Although it’s possible to alter or delete individual elements, doing so may cause the form
to not work properly if an error is introduced; thus doing so isn’t recommended.

The APEX form wizards listed in Figure 6-1 are the fastest, most effective, and most accurate way to create APEX
forms. The wizards guide you through a series of steps, collect the information required for the form type, and then
generate all the required items, processes, and buttons. Using the wizards frees you from the tedious and error-
prone task of individually creating each component. After a wizard creates a form, you can, and likely will, make
modifications and enhancements to the resulting components to tailor the form to your specific requirements.

97

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

| € || cancel | Next »
(_) Form on a Procedure (=) Form on a Table or View (_) Form on a Table with Report
ey ey
S @ - [l
i_' [OF ‘V_' ()
() Master Detail Form (_) Tabular Form (_) Formon a SGL Query
o
ey et
—
== M G S @
== [E S = —
EH = | |
EH e e
() Summary Page (_) Formon Web Service (_) Form and Report on Web Service

Figure 6-1. APEX Form Wizard options

The following are some of the form types that you can create using the wizards listed in Figure 6-1:

e Form on a Procedure: A form based on the arguments of a procedure, typically to collect values
for passing in to a procedure for subsequent processing

e Form on a Table or View: A form built on the columns of a table or view, having one item for
each table column and processing a single row of data at a time

e Form on a Table with Report: A form built on the columns of a table or view, having one item
for each table column and processing a single row of data at a time, plus a report on the
contents of the table or view, with navigational elements between the report and form pages

e Master Detail Form: A form on a pair of tables having a master-detail relationship. The APEX
Master-Detail Form Wizard creates all the data, processing, and navigational elements
required for managing master-detail data

e Tabular Form: A multirow, multicolumn form (like a spreadsheet) that allows editing of
multiple rows and columns of data at once

e Formon a SQL Query: A form built on the results of a SQL query. This is a very powerful form
construct due to its flexibility

e Summary Page: A display-only form showing selected items from an existing input form page.
A summary page is often used in building a confirmation page for a wizard

e Form on Web Service: A form on the arguments of a web service

e Form and Report on Web Service: A single-row form on the arguments of a web service with
a corresponding report of all rows of data, including navigational elements for moving from
report to form and back

98

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

If you look at the available APEX form wizards, you see that several of them create accompanying reports
(the Form on a Table with Report and Form and Report on Web Service Wizards). It's a common practice to use a
report on a table, view, or web service to locate a particular row of data and then edit that data in a form on the same
table, view, or web service. Some wizards simply create both the report and the form for you, including all navigation
elements and database-transaction processes required to make everything work.

Form on a Table

One of the most common types of form in APEX is the form on a table. The APEX Form on a Table Wizard automatically
creates and maps APEX items to database columns, making it trivial to quickly create forms for database table entry
and update. As a developer, you can then modify the different types of controls for each column. All of the supported
HTML widgets (text fields, text areas, select lists, radio groups, check boxes, and so on) are available, as well as several
APEX-specific ones. The best way to understand just what the APEX Form on a Table Wizard does is use it, so let’s dive
in and create a form on a table.

Creating a Form on a Table

In this section you create Page 2 of your Help Desk system and add a form to it. This form allows the user to create a
new ticket by inserting a row into the TICKETS table. You can limit which DML operations a form in APEX can perform.
In this case, you restrict it to only performing inserts.

The Form on a Table Wizard walks through all the steps required to generate a form on a table: selecting the
parsing schema, selecting the table on which to base the form, selecting the columns to include and edit, assigning
region and form titles, and specifying column headings. Begin as follows:

1. Runyour Help Desk application.

2. Click Create in the Developer toolbar at the bottom of the screen.
3. Select New Page, and click Next.
4. Select Form, and click Next.
5. Select Form on a Table or View, and click Next.
6. Set Table/View Owner to your schema, and select TICKETS (table) for
Table/View Name, as shown in Figure 6-2. Click Next.
Cancel Next)

This w

rd builds a form to update a single row in a daf se table or view. Identify the schema owner and name of the table or view on which you wish to build a form.

* Table

iew Owner APRESS

* Table / View Mame | TICKETS (table)

Figure 6-2. Entering the schema and table name

99

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

The next step allows you to set some details about the page and region that will be created as a result of the
wizard. Page Number can be set to anything you wish, but it must be unique within an application. Page Name sets
the text that appears in the browser tab when the application is run, and Region Title sets the text that displays in the
region’s title area.

The region template dictates how the region container is visually rendered. Each APEX theme has a number of
templates available, but you'll find that you use the Form Region and the Report Region templates the most. Continue

as follows:
7. Enter 2 for Page Number, as shown in Figure 6-3. Enter Create a Ticket for both
Page Name and Region Title. Set Breadcrumb to Breadcrumb. When the page refreshes,
click Home (under Select Parent Entry) to set it as the Parent Entry, and click Next.

(Cancel

Next)

Specify page and region information. If the page y

Owner: APRESS
Table/View Name: TICKETS

* Page Number 2

Use User Interface Defaults: No

@ Yes

* Page Name | Create a Ticket
* Region Title | Create a Ticket
* Region Template | Form Region

Breadcrumb Breadcrumb

Entry Name Create a Ticket
Parent Entry Home

[Mo parent breadcrumb entry]

Select Parent Entry:
Name Page
Home 1

row(s)1-10of1

» User Interface Defaults

Figure 6-3. Specifying page, region, and breadcrumb information

Next you get to choose how this page relates to the tab sets and tabs you've already defined, if it does at all
Because this page will form part of the public section of the site, you assign it to the Home tab:

8. For Tab Options (Figure 6-4), select Use an existing tab set and reuse an existing tab

within that tab set. When the page refreshes, set Tab Set to TS1 (Home), set Use Tab to
T_HOME, and then click Next.

100

‘ (H Cancel ‘
Page: 2
TabOptions: () Do not use tabs

(! Use an existing tab set and create a new tab within the existing tab set.
(®) Use an existing tab sst and reuse an existing tab within that tab set.

*TabSet | TSI (Home) 3]

*UseTab [T_HOME |

v Tabs

Figure 6-4. Specifying tab options

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Next)»

APEX 4 introduced the ability to use ROWID as a primary key. This comes in handy when you're dealing with a
table that has a multicolumn natural primary key, but the table already has a single column primary key defined, so

you'll use that:

9. SetPrimary Key Type to Select Primary Key Column(s), ensure that Primary Key is set

to TICKET_ID, and click Next.

The primary key of the table is based on a sequence within the database, and there is already a trigger in place
that fills the primary key with the next sequence value, if the primary key for the incoming record is null:

10. Set Source Type to Existing Trigger, as shown in Figure 6-5, and click Next.

‘ (H Cancel ‘

Select the method by which the primary key is populated.

« Choose Existing Trigger if there is already a trigger to populate the primary key.

+ Choose Custom PL/SQL Function to define custom PL/SOL logic to generate the primary key value.

« Choose Existing Sequence if an existing sequence will be used to generate the primary kay.

Cwner. APRESS
Table/View Name: TICKETS
Primary Key Column 1: TICKET_ID

* Source Type:

(=) Existing trigger (C) Custom PL/SQL function () Existing sequence

* Custom PL/SQL Function Example

> Existing Triggers

Figure 6-5. Specifying the primary-key population option

Next)

101

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Next you specify the columns that will be visible and editable on the form. By default, all the columns in the chosen
table appear in the selected column. However, for this simple form, you want to restrict the columns the user can see:

11. Using the shuttle, make sure SUBJECT, DESCR, CREATED_BY, and STATUS_ID are the only
columns selected, as shown in Figure 6-6, and click Next.

€ || Ccancel Next »

Select the columns to include on the form.
Page: 2

Owner: APRESS

Table / View Mame: TICKETS
* Select Column(s) [ASSIGNED_TO (Varchar2) E@ SUBJECT (Varchar2)
CREATED_ON (Date) DESCR (Varchar2)
CLOSED_ON (Date) CREATED_BY (Varchar2)
STATUS_ID (Number}
<
K&

Figure 6-6. Selecting the columns to include

Not all forms allow people to update or delete data. Some are simply data-entry forms. In this case, you want un-
authenticated users to be able to submit a ticket, but you don’t want them to be able to edit or delete those tickets. The

next step of the wizard lets the developer choose which actions are available to the end user and name the buttons
related to those actions.

Every form should have a Cancel button that allows the user to abort any actions or data entry. But the rest of the
buttons are optional:

e Create button: Saves a new record
e Save button: Saves updates to an existing record
e Delete button: Deletes an existing record

Continue now with creating the form:

12. Enter Cancel for Cancel Button Label and Create a Ticket for Create Button Label. Set

Show Save Button and Show Delete Button to No, as shown in Figure 6-7, and click Next.

102

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

€ || cancel Next »

Identify the process

options and button display text for the form. For example, to prevent users from being able to delete from the form, choose No for the delete button option.

Page: 2
Owner: APRESS
Table/ View Name: TICKETS

Cancel Button Label | Cancel

Show Create Button Yes 3 Create Button Label | Create a Ticket
Show Save Button No ¢ Save Button Label | Apply Changes
Show Delete Button No # Delete Button Label | Delete

Figure 6-7. Specifying the buttons to display

When the user enters a ticket and clicks a button to either cancel data entry or create the new ticket, you need to
specify what happens next. Does APEX stay on the same page? Does it return to the home page?

In this instance, you want the user to be redirected to the home page no matter which choice they make:

13. Set both After Page Submit and Processing Branch to Page and When Cancel Button
Pressed Branch to This Page to 1, and click Next. See Figure 6-8.

(Cancel

Next >

Page: 2
Owner: APRESS
Table /View Name: TICKETS

* After Page Submit and Processing Branch to Page 1

* When Cancel Button Pressed Branch to this Page 1

Figure 6-8. Specifying processing for submit and cancel

As with most wizards, you're presented with a final page that summarizes your choices. At this point you can use
the Previous and Next buttons to work your way back and forth through the wizard steps to alter any of your choices.
Then do the following:

14. Click Create to complete the wizard.
15. Runyour application.

Congratulations! You've just created a fully operational form on the TICKETS table. The form should look similar
to Figure 6-9.

103

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

Help DeSk Welcome: ADMIN Logout

Home

Home Create a Ticket

Create a Ticket Actions
Cancel Create a Ticket + Submit a Ticket
» ContactUs
Subject
Description
s
Created By

Status | CLOSED

Figure 6-9. Running the form on the TICKETS table

Notice that the form region is labeled as you specified in step 7, the form contains fields for the four columns you
selected in step 11, and the Create a Ticket button is labeled as you specified in step 12. Also notice that the four fields
are each created as the default element type specified in the UI defaults for the TICKETS table that you created in
Chapter 4. The help text you specified for each column is there, and it pops up in a new window when you click the
item label. The Cancel button brings you to the home page—page 1, as you specified in step 13. APEX did a lot of work
for you!

Modifying a Form on a Table

The APEX wizards do handle most of the work of creating a form for you. However, it’s rare that you won’t have to
make some minor changes to what the wizard creates. Now that you have the Create aTickets form on page 2, you can
make a few changes to polish it up a bit.

Changing the Label Templates

You'll change the label templates for P2_SUBJECT and P2_CREATED_BY (the items that correspond to the SUBJECT

and CREATED_BY table columns) to Required with Help. Use of the Required with Help label template indicates to the

end user that this is a required field on the form. However, it doesn’t make the field itself mandatory. You do that later.
You'll also reduce the width of P2 CREATED_BY so it doesn’t take up as much space. Begin as follows:

1. Edit Page 2 of the application.
2. Edit the item P2_SUBJECT by double-clicking its name.

3. Inthe User Interface region shown in Figure 6-10, set Template to Required with Help,
and click Apply Changes.

104

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

User Interface S
* Sequence 20
* Region Create a Ticket {0)

Template Required with help

Figure 6-10. Modifying the label templates

4. Edit the item P2_CREATED_BY by double-clicking its name.
5. Inthe User Interface region, set Template to Required with Help.

6. Inthe Element region, shown in Figure 6-11, set Form Element Width to 20, and click
Apply Changes.

Element ~

Horizontal / Vertical Alignment Left
Form Element Width 20| Maximum Width 50
Value Placeholder
HTML Form Element CSS Classes ~
HTML Form Element Attributes ~

Pre Element Text

Past Element Text

Figure 6-11. Setting the display attributes

Next, you want to hide the P2_STATUS_ID item from the user because you don’t want the user to change this
value. You do, however, want all new tickets to be created with a default value of OPEN. Because you can’t guarantee
which STATUS_ID maps to which STATUS, you can call a simple function and pass in the STATUS. This function, in turn,
returns the corresponding STATUS_ID, which is set as the default value for P2_STATUS_ID:

7. Edit the item P2_STATUS_ID by double-clicking its name.
8. In the Identification region, set Display As to Hidden.

9. Inthe Default region shown in Figure 6-12, set Default Value to RETURN get status
('OPEN') ; and set Default Value Type to PL/SQL Function Body, and then click Apply
Changes.

105

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

Default N

Default walue

RETURN get_status(*OPEN');

Default Value Type
PL/SQL Function Body

Figure 6-12. Specifying a default value

Next, you want to set page 2 to be a public page. You want any user—authenticated or not—to be able to access
this page:

10. Edit the page attributes for Page 2 of your application by double-clicking its name (Create
a Ticket) at the top of the Page Rendering tree.

11. SetPage 2 to be a public page, and click Apply Changes. Refer back to Chapter 5 for detailed steps.

Finally, you need to make sure users enter values for the Subject and Created By fields. There are two ways to
make a field mandatory in APEX. You'll use one method for each field.

Making the Fields Mandatory

For the Subject field, you'll create a validation. Although a validation takes more steps, it gives you more control over
how and when it’s performed. Here’s what to do, first for the Subject field and then for the Created By field:

1. Edit Page 2 of the application.

2. Create a new validation by right-clicking the Validating node on the Page Processing tree
and selecting Create Validation, as shown in Figure 6-13.

Page Processing .

After Submit
| reate Validation
reate Branch

Expand All

Collapse All
=l After Processing
E =p Branches

i GoTo Page

- @ AJAX Callbacks

Figure 6-13. Choosing to create a new validation

106

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

3. Select Page Item as the Validation Level, and click Next.

4. Select Create a Ticket: 20. P2_SUBJECT (Subject), and click Next.
5. SetValidation Name to P2_SUBJECT is NOT NULL, as shown in Figure 6-14, and click Next.

€ || Ccancel Next »

Specify the sequence in which your validation executes. |dentify a name for the validation to make it easy to locate in the future. Also specify the location where an error
message display if the validation fails

Page: 2
ltem: P2_SUBJECT

* Sequence 10

* Validation Name P2_SUBJECT Is NOT NULIJ

Error Display Location Inline with Field and in Motification =

Figure 6-14. Entering the details for a new validation

6. Select Not Null for Validation Type, and click Next.

7. Under the Error Message text area, click the quick link (in red) that reads [#LABEL# must
have some value.] and click Next.

8. Accept the defaults on the final screen, and click Create Validation.

At this point, you see a new validation in the Page Processing region called P2_SUBJECT is NOT NULL.Next, you
use the second method to make the Created By field mandatory. To do this, simply set an attribute of the input item:

9. Edit P2_CREATED_BY by double-clicking its name.

10. Inthe Settings section shown in Figure 6-15, set Value Required to Yes, and click Apply Changes.

Settings M

Walue Required Yes =

Subtype Text

Submit when Enter pressed No

Disabled No

Ak

Figure 6-15. Making a value required

When you return to the Page Edit screen, you see that no new validation has been created. That is because you
used the item-level attribute instead of creating a full validation. The main difference between the item-level and a full
validation is that with the item-level validation, you can’t conditionally control when the attribute is applied and you
don’t have direct control over the error message that is emitted.

Go ahead and run the application again. At this point, you're able to enter new tickets into the system but not see
them anywhere outside of SQL Workshop.

107

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Looking Behind the Scenes

Now that you have a working form, let’s look at just what the APEX Form Wizard built in order to understand a bit
more about how your form works. You can use the Form » Display Form Details option of the Web Developer Toolbar
add-in (available for both Chrome and Firefox) to display the form details. Figure 6-16 illustrates the Create a Ticket
form with the form details exposed.

Create a Ticket
<button id="B9365518293170520" value="Cancel"> (Cancel -:button id="B9365315207170520" value="Create a
BT | Create a Ticket

<input name="p_arg_names">|EEISCIEEEI R Ml <input id="P2_TICKET_ID" name="p_t81">
<input name="p_arg_checksums">JEEIFLIEEETS bk 3 i

<input name='p_arg_names">|EEIFELERIDVIFIQI<input id="P2_SUBJECT" maxlength="255"
name="p_t@2" size="60" type="text">|] |

Subject

e T I T e (93666 10397170521

<textarea id="P2_DESCR" maxlength="4000" name="p_t83">|

Description

A

<input name=''p_arg_names">|EEFSUEIRE NI PRl <input id="P2_CREATED_BY" maxlength="5@"
name="p_t@4" size="2@" type="text"> <input name="p_arg_names">

EEC E LYY AR LYl <input id="P2_STATUS_ID" name="p_t05">]E]

U e I g Ml e T el | 9367 300707170522

Created By

Figure 6-16. Form on the TICKETS table with form details exposed

Note The Web Developer Toolbar add-in is a free web development tool, written by Chris Pederick, that lets you
inspect various aspects of a web page. To learn more about Web Developer, visit http://chrispederick.com/.

The highlighted input tags display the input identifier and name for each field of the form. Both are unique for
each form field. The input identifier is the column name prepended with the page number. The input name identifies
the element names that APEX uses internally to process data in the form. Note that the columns you didn’t choose to
display in the form, TICKET_ID and STATUS_ID, are still present in the page’s HTML.

A look behind the scenes tells you more. Click Edit Page 2 in the Developer toolbar to view the elements that
make up the new form. You should see results similar to those in Figure 6-17.

108

http://chrispederick.com/

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Page Rendering L 3 Page Processing L Shared Components L

El [Create a Ticket After Submit [Parent Tabs

ar =] idating ‘E‘ List of Values
. i Ep Branches »e Breadcrumbs
Computations 0 & validations
Bl @ Processes L. P2_SUBJECT Is NOT MULL
i L Fetch Row from TICKETS El Processing
. = Regions i = Branches
[Before Regions =] @& Processes
[Regions .- Process Row of TICKETS
Bl Body (3) L. reset page
B D Create a Ticket El After Processing
Bl Items Bl =P Branches
| L.d3 P2_TICKETID L. GoTo Page 1
P2_SUBJECT - % AJAX Callbacks

P2_DESCR
P2_CREATED BY
P2_STATUS_ID
=l Region Buttons
i @ GANGEL
‘. @ CREATE
[After Regions
[Before Footer
M

After Footer

Figure 6-17. Elements of a form as viewed from Application Builder

The Page Rendering region contains APEX objects required for page rendering. The Page Processing region
contains objects required for page processing, such as validations, processes, and branches. The Shared Components
region contains APEX objects that are shared across pages, such as tabs, lists of values, breadcrumbs, templates, and
security schemes.

For your new Create a Ticket form, in the Page Rendering section, you see that the wizard has created one item
for each of the columns from the TICKETS table that you selected via the wizard. There are also two buttons called
Cancel and Create, and a Fetch Row from TICKETS process. This process is an Automated Row Fetch process, which
does exactly what its name says: it fetches a row from the designated table into the current form. The attributes of the
Automated Row Fetch process specify the table owner, the table name, the primary key column(s), success and failure
messages, and a condition.

Notice that the TICKET ID item is present on the page but isn’t rendered on the form. It’s visible in the Display
Details view of the form as the first element on the page, with no visible element associated with it. TICKET_ID is a hidden
item. APEX hidden items exist to hold a value, but although they’re rendered on the page, they aren’t visible to the user.
In this case, the hidden TICKET_ID column holds the primary key value for the TICKETS row. As the primary key, TICKET_ID
is used by the APEX processes to pull data from the database and to process inserts, updates, and deletes on a TICKETS
row. Because you don’t want the end users to edit the primary key, APEX automatically hides it for you.

In the Page Processing column, you have a Process Row of Tickets process, a Reset Page process, and a Go To
Page 1 branch. The Process Row of Tickets process does just that: it processes one row of the TICKETS table using the
values from the items that correspond to the columns of the TICKETS table. This process fires when the user clicks the
Create button. The reset page process clears the items on the page. It fires when the user clicks the Cancel button.

In the Shared Components region, you need to expand the Parent Tabs tree node to see that this page uses the
Home tab in the TS1 tab set. Expanding the Breadcrumbs region shows the Breadcrumb object. Under Templates, you
see that your form uses the default One Level Tabs - Right Sidebar (Optional/Table Based) page template, the Form
Region template, two different Label templates, and the default Button template.

All APEX form wizards create items, buttons, and processes, but in different combinations to suit the specific
needs of the form type. The other APEX form wizards perform essentially the same way, with slight differences in
process types and navigation objects to accommodate the underlying data source: table or view, procedure, query,
or web service. Next, let’s look at a form on a procedure.

109

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

Form on a Procedure

Another way to create a form in APEX is to create it based on the parameters of a PL/SQL procedure. Instead of the
traditional DML processes, APEX calls the associated procedure and executes whatever logic is embedded within
it. This method is also referred to as using table APIs because this is the option to use if all access to tables in your
workspace schema must be through a table API.

Creating a Form on a Procedure

The process to create a form on a procedure is almost identical to that of a form on a table. You create a new page
containing a form on the CONTACT_US stored procedure to enable users to contact you through the Help Desk
application:

1. Run the application.

Click Create on the Developer toolbar.

Select New Page, and click Next.
Select Form, and click Next.

Select Form on a Procedure, and click Next.

@ o & W N

Set Procedure Owner to your schema, enter CONTACT _US for Stored Procedure Name, as
shown in Figure 6-18, and click Next.

Cancel Next)»

|dentify the database schema that owns the proocedure on which you wish to build a form.

* Procedure Owner APRESS

* Stored Procedure Name | CONTACT_US| ~

Figure 6-18. Creating a form on a stored procedure

7. Inthe top section of the page, enter 3 for Page Number, enter Contact Us for both
Page Name and Region Name, and set Breadcrumb to Breadcrumb, as shown in
Figure 6-19 . When the region refreshes, click Home to set it as the Parent Entry,
as shown in Figure 6-20, and click Next.

110

(Cancel

If the page you specified does not exist, Application Builder will create that page for you.
Owner: APRESS
Stored Procedure Mame: CONTACT_US
* Page Number | 3
* PageMame | Contact Us
Region Template Form Region
* Region Name | Contact Us
Submit Button Label | Submit
Cancel Button Label | Cancel

Breadcrumb Breadcrumb
Figure 6-19. Specifying form page, region, and button names

Breadcrumb Breadcrumb

Entry Name Contact Us

Parent Entry | Home

[Mo parent breadcrumb entry]

Select Parent Entry:

Name Page

2
row(s)1-2of2

Figure 6-20. Selecting the breadcrumb parent entry

CHAPTER 6

FORMS AND REPORTS—THE BASICS

Next >

8. For Tab Options, select Use an existing tab set and reuse an existing tab within that tab
set. When the page refreshes, set Tab Set to TS1 (Home) and Use Tab to T_HOME. Then

click Next.

9. Leave Invoking Page and Button Label blank, and click Next.

10. Enter 1 for both Branch Here on Submit and Branch Here on Cancel, as shown in Figure 6-21.

Then click Next.

111

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

€ || cancel Next)»

Owner: APRESS

Stored Procedura Name: CONTACT_US

Page: 3
* Branch here on Submit 1 ~
* Branch here on Cancel 1 ~

Figure 6-21. Specifying branching options

11. Inthe dialogin Figure 6-22, set the Label for P FROM to From. Set the Label for P BODY
to Body. Set the Display Type for P BODY to Textarea, and then click Next.

€ || Ccancel Next >

Select the procedure arguments you want to include in the form. You can also define item prompts and default values.
Owner: APRESS

Stored Procedure Mame: CONTACT_US

Page: 3
Argument Label Include Default Display Type
P_FROM From Yes = Text Field
P_EBODY Body Yes 3 Textarea

Figure 6-22. Specifying procedure arguments

12. Click Create.

Modifying a Form on a Procedure

Once again, the wizard has done most of the work, but you have a few minor changes to make before your form on
a procedure is complete. You want both the From and Body values to be required, so you need to change their label
templates and set their Value Required attribute to Yes. Do the following:

1. Edit Page 3 of the application.
Edit P3_FROM by double-clicking its name.
In the User Interface section, change Template to Required with Help.

In the Settings section, change Value Required to Yes.

LA

Click the > button at the top of the page (next to the Apply Changes button) to save your
changes and advance to the next item.

6. Inthe User Interface section, change Template to Required with Help.

112

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

7. Inthe Settings section, change Value Required to Yes.

8. Inthe Element section, set Form Element Width to 80 and Form Element Height to 5.
9. Click Apply Changes.

Next, set page 3 to be a public page. You want any user—authenticated or otherwise—to be able to send you
a message through the Contact Us page:

10. Edit Page 3 of the application.
11. Set Page 3 to be a public page. Refer back to Chapter 5 for detailed steps.
Finally, modify the process that was created to include a success message:

12. Inthe Page Processing tree, edit the process Run Stored Procedure by double-clicking its name.

13. Inthe Messages region, enter the following for the Process Success Message:
Your message has been sent.

14. Scroll to the top, and click Apply Changes.

Run your application, and test the Contact Us form. Each time you submit a record, an e-mail is sent to
info@example.com. If you want to change the destination address for the e-mail, you can use the SQL Workshop’s
Object Browser to edit the CONTACT _US procedure.

Looking Behind the Scenes

From the user perspective, there is no indication that the form you've just created was created on a procedure. Looking
in the Application Builder, the objects in the Page Rendering sections are similar to what you saw in your form on a table
on page 2, but not exactly. Let’s take a look to see what makes your form on a procedure different from the form on a
table. Edit page 3 of your application. The Application Builder page should look similar to that in Figure 6-23.

Page Rendering L Page Processing L Shared Components L
=] D Contact Us B After Submit |j Parent Tabs
B Before Heade B Validati T List of Values
B After H B Proce: »s Breadcrumbs
B Before Regions
[Regions =l
E Body (3} I‘fl Security
= [ContactUs 5 After Processing
B ltems El = Branches
. g2 P3_FROM i Go To Page 1
: L g2 p3_BODY & AJAX Callbacks
= Region Buttons
i @ CAMCEL
“ @ suBMIT
B After Regions
[Before Footer
B After Footer

Dynamic Actions

Figure 6-23. Elements of a form on a procedure as viewed from Application Builder

113

http://www.info@example.com

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

In the Page Rendering section of the Application Builder, you have two items, P3_FROM and P3_BODY,
corresponding to your two form fields, From and Body. There are two buttons, CANCEL and SUBMIT.

In the Page Processing section are a process and a branch. However, the process is a different type—a PL/SQL
anonymous block. This powerful type of process executes the PL/SQL procedure specified in the Source element.
The PL/SQL procedure can be a stored PL/SQL procedure or an anonymous PL/SQL block, as long as the code is
syntactically correct between a BEGIN statement and an END statement. In this case, the process calls the CONTACT_US
procedure using the P3_FROM and P3_BODY item values as input parameters. The body of the CONTACT_US procedure
is what creates and sends an e-mail. Thus, the key difference between the form on a table and the form on a procedure
is in the Page Processing process that is executed on a click of the Create button. The APEX wizard has automatically
provided the process type required for the selected form type.

The Shared Components region contains the standard entries for the table, breadcrumb and page, tab, region,
label, and button templates, the same as for the form on a table. Again, it was nice of the form wizard to create all
these elements for you.

Master-Detail Report and Form

One of the most popular features in APEX is the Master Detail Form Wizard. With a single, simple wizard, you can
quickly create a report and corresponding forms to manage data stored in a master-detail fashion. Let’s use this
wizard to create a report and forms for the TICKETS and TICKET_DETAILS tables.

Creating a Master-Detail Report and Form

First, you create the report and form on application pages 200, 210, and 220. Because you don'’t yet have those pages
created, the wizard does that for you.

Note Earlier you created the Actions menu on the Global Page and made it conditionally show only when the current
page number was less than 100. From now on, you’ll assign numbers greater than 100 to all the pages so the Actions
menu doesn’t appear.

1. Run any page in your application.

Click Create on the Developer toolbar.

Select New Page, and click Next.
Select Form, and click Next.
Select Master Detail Form, and click Next.

See Figure 6-24. Set Table/View Owner to your schema. Set Table/View Name to
TICKETS (table). When the page refreshes, all the columns from the table are selected by
default. Click Next.

o o &~ w N

114

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Cancel Next »

Select the table or view which contains the columns to be included in the master page.

* Table / View Owner | APRESS

* Table / View Name | TICKETS (table) :]

* Select Columns TICKET_ID

SUBJECT

pEscr

P |ASSIGNED_TO
CREATED_ON
CLOSED_ON
CREATED_BY
STATUS_ID

Use User Interface Defaults: () No (®) Yes

» User Interface Defaults

Figure 6-24. Creating the master page

When dealing with a master-detail relationship, you normally have a foreign key between the detail and the
master tables. However, that may not always be the case. At the detail table step, the wizard allows you to choose
whether to show only tables that are related via a foreign key.

In this case, the tables are indeed linked, so you can leave Show Only Related Tables set to Yes.

7. Select TICKET_DETAILS for Table/View Name. When the page refreshes, make sure the
following columns are moved to the Selected area to the right. You should end up with
results like those in Figure 6-25.

e TICKET DETAILS ID
e TICKET ID

e DETAILS

o CREATED BY

o CREATED ON

o ATTACHMENT

115

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

€ || cancel Next »

view which contains the columns to be included in the

Master Table: APRESS.TICKETS
Show Only Related Tables: () No (®) Yes

Table / View Owner APRESS ;

Table / View Name TICKET_DETAILS =+

* Select Columns |FILE_NAME A [TICKET_DETAILS 1D
MIME_TYPE 35 TICKETID

DETAILS

® |CREATED_BY

@ |CREATED_ON
ATTACHMENT

K

Figure 6-25. Defining the detail table

8. Click Next.

9. Set Primary Key Type for the master table to Select Primary Key Column(s). For
Primary Key Column 1, select TICKET_ID.

10. Set Primary Key Type for the detail table to Select Primary Key Column(s). For
Primary Key Column 1, select TICKET_DETAILS_ID.

11. Click Next.

12. Set Primary Key Source to Existing Trigger for the master table, and click Next.

13. Set Primary Key Source to Existing Trigger for the detail table, and click Next.

14. Set Include master row navigation? to Yes, as shown in Figure 6-26. Set Master Row
Navigation Order to CREATED_ON, and click Next. Do not click Finish at this point.

€ || cancel Finish Next)

Determine whether to include master row navigation. If you include master row navigation, define navigation order column(s). If a navigation order column is not defined, the
master update form will navigate by the primary key column.

By default, this wizard creates a master report page. You can choose to not create master report page if you already have a report page.
Master Table: APRESS.TICKETS

Include master row navigation? Yes *

Master Row Mavigation Order | CREATED_ON 3
Secondary Navigation Order - Select Column - *
Include master report? (O No @ Yes

Figure 6-26. Defining master row navigation options

116

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

15. Set Build Master Detail with to Edit Detail on Separate Page, and click Next.

16. On the next page, set the items to the values shown in Figure 6-27.

‘ £ H Cancel ‘

Next »

This page specifies master and detail page information. If the pages you specify do not exist, the pages will be created for you.

Master Table: APRESS.TICKETS

Detail Table: APRESS.TICKET_DETAILS

* Page * Page Title * Region Title
Master
200 o~ |Tickets Tickets
Detail
210 ~ Manage Tickets Manage Tickets
Ticket Details
Detail 2

220 L~ Ticket Details Ticket Details

Breadcrumb ¥ - do not use breadcrumbs on page -

Breaderumb

Figure 6-27. Specifying page attributes

17. Set Breadcrumb to Breadcrumb.

18. Once the region refreshes, in the Create Breadcrumb Entry section, set the items to the
values shown in Figure 6-28.

Breadcrumb | Breadcrumb

Create Breadcrumb Entry

Entry Name (Master Report)
Entry Wame (Master Detail Page)
Entry Name (Detail Form)

Parent Entry

Select Parent Entry:

Name Page
Home 1
Contact Us 3
Create a Ticket 2
row(s) 1-3of 3

Tickets
Manage Tickets
Ticket Details

MNo parent breadcrumb entry

[No parent breadcrumb entry]

Figure 6-28. Creating a breadcrumb entry

117

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

19. Click Next.

20. Setthe Tab Options in Figure 6-29 to Use an existing tab set and create a new tab within
the existing tab set. When the page refreshes, set Tab Set to TS1 (Home), enter Tickets
for New Tab Label, and click Next.

€ || Ccancel Next)

Tab Options: Do not use tabs
(EJ Use an existing tab set and create a new tab within the existing tab set.
Use an existing tab set and reuse an existing tab within that tab set.

*TabSet | T51 (Home) *

* Mew Tablabel Tickets

Figure 6-29. Setting tab options

21. Confirm your selections, and click Create.

When the wizard completes, you have a working master-detail form on the TICKETS and TICKET_DETAILS tables,
plus a report on the TICKETS table. This is perhaps one report more than you expected, but APEX knows that in most
cases, you need the report to select the master-detail record to be edited, so that report is created at the same time
for convenience. The Master Detail Form Wizard created one report and two forms, plus the links and branches for
navigation and the processes for performing database transactions. The Tickets report has a link to the Tickets form,
which allows editing of ticket master data and lists ticket details. The Ticket Details region on the Manage Tickets page
has an Edit link to the Ticket Detail form, where the user can add, update, or delete ticket detail information. All the
items, buttons, processes, and even the column links were created by the Master Detail Form Wizard.

Again, although you can build a master-detail form and report manually, the wizard is much faster and certainly
more efficient. Now let’s make some adjustments to the report and the forms to suit your requirements.

Modifying a Master-Detail Report

Next, you modify the report to add CSV export capabilities, change the sorting options, and modify the date format
mask. Then you'll clean up the two edit forms. Here are the steps:

1. Edit Page 200 of your application.

2. Edit the report attributes by right-clicking the name of the Tickets region and selecting
Edit Report Attributes, as shown in Figure 6-30.

118

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Page Rendering L

B[] Tickets
H Before Header
H After Header
H Before Regions
- Regions
= Body (3)
=
Edit
Edifiieport Attributes

Edit Print Attributes

e B e e

m

e
1+

After R
B Before Create

After F Create Page ltem

~ DYNam Greate Page ftem Button
Create Region Button
Create Dynamic Action
Create Validation

Create Sub Region
Copy

Rename

Expand All

Collapse All

el
FE

Figure 6-30. Choosing to edit report attributes

3. Enable column sorting for all columns except TICKET_ID and DESCR by selecting the Sort
check box for each column. Hide the DESCR column from the report by unchecking the
corresponding Show check box. See Figure 6-31.

Column Attributes

Headings Type: (O) Column Names () Column Names (InitCap) (&) Custom (_) PL/SQL () None
Column Column Heading Sort
Alias Link Edit Heading Width Alignment Alignment Show Sum Sort Sequence

./ TICKET_ID v [Edit | | | [right] [center 1] & O 0O = .
~/ SUBJECT [subject | | | (e 2] [cemer 1] & O & [-
./ DESCR [Description || | (2] [eemer 2] O 0O 0O [=__ :
./ ASSIGNED_TO [assigneaTo | | | (e 2] [cemer 1] & O & [-
./ CREATED ON |created On | | | (et t] [center 1] & O & [- -
~” CLOSED_ON [Closed on | | | (et 2] [cemer 3] & O & [- =
./ CREATED_BY [Created By | | | (e 2] [cemer 1] & O & [- =
./ STATUS.ID [status | | | [right | [cemer 3| & O & [- =

When moving the last column further down, it will show up as the first column of your report.

When moving the first column up, it will be moved to the end of your report.

Figure 6-31. Editing column attributes

119

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

4. Inthe Layout and Pagination section, set Enable Partial Page Refresh to Yes.

5. Inthe Report Export section, set the following options, which you can also see in Figure 6-32:

Report Export

Enable CSV output
Link Label

Filename

Enable CSV Output: Yes
Separator: ,

Enclosed By: “

Link Label: Export to Excel

Filename: tickets.csv

Yes Separator , Enclosed By
Export to Excel

tickets.csv

Figure 6-32. Setting report export options

6. Scroll to the top of the page, and edit the CREATED_ON column by clicking the Edit (pencil)
icon. This also saves the changes you made in steps 2 through 5.

Values entered in the Column Attributes region set the format, width, number of rows (for text areas), number of
columns (for radio groups), and other element attributes for the report column.

7. Inthe Column Attributes section, for Number/Date Format (Figure 6-33), select this
format mask using the pop-up LOV: Monday, 12 January, 2004. Selecting it returns
fmDay, fmDD fmMonth, YYYY into the Number/Date Format field.

Column Attributes ~
Display As Display as Text (escape special characters, does not save state) *
Mumber / Date Format | fmDay, fmDD fmMonth, YYYY »
Graphical formatting for percentanes, whole numbers betwesn 0 and 100
Field Template - render form field without template - +

Element Width

Element CS5 Classes ~

Element Attributes

Element Option Attributes

Figure 6-33. Selecting a date format mask

120

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

CSS and HTML formatting directives entered in the Column Formatting region are applied to the report column
when the page is rendered:

8. Inthe Column Formatting section, enter font-weight:bold for the CSS Style field
(Figure 6-34). Click Apply Changes.

Column Formatting A

CS5 Class

CSS Style | font-weight:bold |

Highlight Words

HTML Expression

[Insert column value]

Figure 6-34. Choosing column formatting options

9. Edit the TICKET_ID column by clicking its edit icon.

10. Inthe Column Definition region, set Include in Export to No, and click Apply Changes.

11. Run the page to view your changes.

Note that when you sort an APEX report column by date, the report sorts based on the value of the actual date,
not the displayed value. This is a built-in feature of APEX. Also, when you export to Excel, the TICKET_ID column isn’t
part of the resulting CSV file, which is the result of your setting the Include in Export option to No.

Next, remove STATUS_ID and replace it with the corresponding value, pulled into the report by a slight adjustment
to your query:

1. Edit Page 200 in your application.

2. Edit the report attributes again by right-clicking the Tickets region and selecting Edit
Report Attributes.

3. Click the Query Definition subtab near the top of the page.

4. Click the Add/Remove Columns button.

5. See Figure 6-35. Ensure that Table/View Owner is set to your schema name and that
Show Related Tables Only is set to Yes.

121

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Select Columns

Table/ View Owner | APRESS =

Table/View Name | STATUS_LOOKUP = |

Show Related Tables Only: (_)No (®)Yes
Select Columns Columns Selected
STATUS_ID TICKETS.TICKET_ID

TICKETS.SUBJECT
TICKETS.DESCR
TICKETS.ASSIGNED_TO
TICKETS.CREATED_ON
TICKETS.CLOSED_ON
TICKETS.CREATED_BY
TICKETS.STATUS_ID
STATUS_LOOKUP.STATUS

‘ Cancel ‘ Next >

Figure 6-35. Selecting report columns

6. Set Table/View Name to STATUS_LOOKUP, and wait for the page to reload.

7. Select the STATUS column in the Select Columns list to the left, and move it to the
Columns Selected list by clicking the > icon.

8. From the Columns Selected list, remove the TICKETS.STATUS_ID column by selecting it
and clicking the < icon.

9. Click Next to verify the join conditions. You see the dialog in Figure 6-36.

Join Conditions

Column Column

“STATUS_LOOKUP"."STATUS_ID" ~ = "TICKETS"."STATUS_ID" ~
) =)
~ = ~

‘ Add More Conditions ‘

‘ Cancel H < Previous ‘ Apply Changes

Figure 6-36. Joining the tables

122

10.

CHAPTER 6

Validate that the Join Conditions are correct, and click Apply Changes.

FORMS AND REPORTS—THE BASICS

11. Edit the report attributes again by right-clicking the Tickets region and selecting Edit
Report Attributes.

12.

Changes.

13.

Enable sorting for the Status column by selecting the Sort check box, and click Apply

Click the + symbol to the left to the Report Columns for the Tickets region to expand that

section of the tree. You can use your mouse to drag and drop columns within the column
list to reorder them. Reorder the columns so that STATUS is the second column in the list.
Drag-and-drop changes are automatically saved.

Run the application to see the changes to the Tickets report. You should see results like those in Figures 6-37
through 6-39. The Created On and Status values are now more readable, and you can sort by column by double-clicking
the column heading.

. m

Tickets

Tickets
Edit Status
4 OPEN
I# cLosED
% oPEN
l# cLoseD
7 OPEN
7 OPEN
4 OPEN
I# cLosED
% oPEN
l# cLoseD
& OPEN
7 OPEN
27 PENDING
14 oPEN

L4 PENDING

Export to Excel

Figure 6-37.

Subject
Cannot log into E-Mail

PC will nottumn on

Need more memory

MSIE Crashed 4 times.

Need 1o install SP2

Network drive not being mapped
BSOD after rebooting

‘Wireless signal not strong enough
I'think | have a virus

Virus Definitions Dates

Funny smell coming from PC
Accidentally deleted Q2.ppt
Several dead pixels on screen
Smartphone will not sync with Cutlook

Getting Out of Memory errors

The Tickets report

Assigned To
SCOTT

M)’T!T\N
DouG
SCOTT
KAREN
KAREN
DoUG
SCOTT
MARTIN
SCOTT
KAREN
MARTIN
DoUG
SCOTT

MARTIN

Created On
Sunday, 25 November, 2012

Closed On
25-NOV-2012

Saturday, 24 November, 2012
Friday, 23 November, 2012
Thursday, 22 November, 2012
Wednesday, 21 November, 2012
Tuesday, 20 November, 2012
Monday, 19 November, 2012
Sunday, 18 November, 2012 24-NOV-2012
Saturday, 17 November, 2012

Friday, 16 November, 2012

Thursday, 15 November, 2012

Wednesday, 14 November, 2012

Tuesday, 13 November, 2012

Monday, 12 November, 2012

Sunday, 11 November, 2012

rowis) 1 - 150f 21 3

Created By
PAUL

RINGO
GEORGE
MARTIN
ALEX
GEDDY
NEAL
MARTIN
ROBERT
MARTIN
JIMMY
EDDIE
ALEX
MICHAEL

DAVID

Next (>

Create

123

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Home m

Tickets) Manage Tickets

Manage Tickets

[Cancel J [Delete J L Apply Changes J u L;J

* Subject | Cannot log into E-Mail

k User called and cannot log into his M5 Qutlook e-mail Account.

Description

Assigned To |scoTT

Created On [25-NOV-2012

Closed On [25-NOV-2012

Created By |pAUL

Status [OPEN +

200f 21
Ticket Details:
Create
| Edit Ticket id Details CreatedBy CreatedOn Attachment |
L_ﬁ 1 Username is: MJONES 8COTT 25-NOV-2012 [datatype]
‘:2 1 User had CAPS lock keyon SCOTT 24-NOV-2012 [datatype]

1.2

Figure 6-38. The Manage Tickets form

Welcome: ADMIN Logout

Help Desk

. m

Tickets » Manage Tickets Ticket Detalls

Ticket Details

{ Cancel _H Delete _H Apply Changes J

Ticket Id 1

JUser had CAPS lock key on
Details

Created By SCOTT
Created On [24-NOv-2012 |

Attachment | Choose File |No file chosen

Figure 6-39. The Ticket Details form

Session State

Next, let’s add a Search field to the report to allow users to filter for a specific ticket they may be interested in. Before
you do, here’s a brief explanation of session state to help you understand how APEX keeps track of the values
associated with a user’s session.

124

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Understanding Session State

Session state is what allows APEX to keep track of all the values that belong in a particular user’s APEX session. Session
state is particularly useful for keeping track of values as a user moves from page to page in the application.

Unlike a stateful database application, where a connection is maintained continuously and all values retain their
value until changed or removed or until the session ends, an APEX application doesn’t maintain a continuous connection
to the database. APEX is a stateless system—the APEX engine generates HTML pages based on directives stored in the
APEX repository. Each page-rendering is a stateless transaction. An APEX session ties the stateless HTML pages together.

An APEX session is logically and physically distinct from the underlying database sessions. A database session
is stateful, and an APEX session is stateless. To illustrate the difference, think of a database session as a phone call on
aland line. The parties are connected for the duration of the conversation. Both parties have to invest resources to
carry on a conversation. Even if no one is talking, the connection—and the link between the two parties—remains, as
shown in Figure 6-40.

A J

Oracle Forms Client Oracle Application Server Oracle Datahase

Figure 6-40. Database session communication

Think of an APEX session as a text message. The parties aren’t directly connected; they push information in one
direction at a time, even if the communication is an entire conversation via a series of texts. Figure 6-41 illustrates APEX
stateless session communication.

v

Web Browser Oracle HTTP Server Oracle Datahase
with APEX

Figure 6-41. APEX session communication

Sharing Database Connections

Multiple APEX users can share the same database connection. There is a one-to-many relationship between APEX
users and database sessions. This is why APEX can scale as well as it does—it doesn’t need dedicated database
sessions, only a database session to use to process a request from a user.

APEX, being stateless, must rely on an external mechanism to manage session state. The APEX engine has a
built-in session-state management component. This session-state management is an integral part of APEX—it can’t
be disabled or circumvented.

Each APEX user is assigned a unique session identifier. Session-state management functions the same, regardless of
how the user authenticates to the system—APEX authentication, database authentication, custom authentication, or public
user. Yes, even unauthenticated users are assigned a session identifier. By default, APEX purges inactive sessions older
than 24 hours every 8 hours. APEX session-state values are stored in a table in the database. The APEX engine recognizes
the user by their session identifier and retrieves the appropriate set of session-state values for the user’s session.

125

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

The values of all APEX items, both page items and application items, are tied to this unique session identifier.
This identifier is referred to as the APP_SESSION_ID. You can see the session identifier in the URL of most pages in an
APEX application. It’s highlighted in Figure 6-42.

http://sadler:7777 /apex/f7p=4000:4203783190788712549:'N ¥ | |

Figure 6-42. APEX session identifier in an APEX URL

Setting and Retrieving Session State

Session state is set by user-input items, computations, processes, and PL/SQL code. In PL/SQL, when within an APEX
process, you can set an item equal to a value, like so:

:P1_ITEM NAME := 'some value';

In PL/SQL, when in a stored procedure, you can use the apex_util.set_session_state procedure to set a value
in session state:

apex_util.set session state('P1_ITEM NAME', 'some value');
The syntax to retrieve session state for an item varies according to where you're referencing the item.
In templates or regions, tabs, menus, or lists, use the following substitution-string syntax (and don’t forget the
trailing dot!):
&P1 ITEM NAME.
Use the following syntax in SQL statements:
:P1_ITEM NAME

From PL/SQL, use one of the following two options depending on what type of block or program unit you're in:

Anonymous PL/SQL block: :P1_ITEM_NAME
PL/SOL Unit Called from APEX: V('P1_ITEM NAME')

Within conditions, use this syntax:

P1_ITEM NAME

Note The v function just mentioned is an APEX-provided function that retrieves the session-state value of an APEX item.
Exercise caution when using this function, because using it in a stored program unit could introduce performance issues.

Viewing Session State

To view session state, click the Session link on the Developer toolbar. You should see a page like that in Figure 6-43.
Then use the Page, Find, and Views parameters to view session state for the application. The drop-down View menu
shown in Figure 6-44 allows you to view Page Items, Application Items, Session State, Collections, and All of the above.

126

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Help
‘ tems. ‘ Pages ‘ Queries ‘ Tables ‘ PL/SQL | Images | Debug ‘ Session ‘ Errots ‘
Page 210 Find Rows (50 3| View | Page items
Application: 123 Help Desk
Session 4408563194901
User ADMIN
Workspace 2642313158820002
Browser Language en
Page ltems
i Page Item Name Display Item Value Status Encrypted
123 210 P210_TICKET_ID Hidden 1 Inserted No
123 210 P210_SUBJEGT Text Field Cannot log into E-Mail Inserted No
123 210 P210_DESCR Textarea User called and cannot log into his MS Outlook e-mail Account Inserted No
123 210 P210_ASSIGNED_TO Text Field 5COTT Inserted No
123 210 P210_CREATED_ON Date Picker 25-NOV-2012 Inserted No
123 210 P210_CLOSED_ON Date Picker 25-NOV-2012 Inserted No
123 210 P210_CREATED_BY Text Fleld PAUL Inserted No
123 210 P210_STATUS_ID SelectList 3 Inserted No
123 210 P210_TICKET_ID_ NEXT Hidden 21 Inserted No
123 210 P210_TICKET_ID_PREV Hidden 2 Inserted Mo
123 210 P210_TICKET_ID_COUNT Display Only = 20 of 21 Inserted Mo
1-11
Figure 6-43. Viewing session state
Help

| tems | Pages | Gueries | Tables | PL/SQL | Images | Debug | Session | Erors |

Page 210 Find Rows | 50 View + Page ltems | m
- - Api
c
Application: 123 Help Desk All

Session 4408563194901
User ADMIN
Workspace 2642313158820002
Browser Language en

Page Items
4 Page Iltem Name Display Item Value Status Encrypted
123 210 P210_TICKET_ID Hidden 1 Inserted No
123 210 P210_SUBJECT Text Field Cannot log into E-Mail Inserted No
123 210 P210_DESCR Textarea User called and cannot log into his MS Qutlook e-mail Account Inserted No
123 210 P210_ASSIGNED_TO Text Field SCOTT Inserted No
123 210 P210_CREATED_ON Date Picker 25-NOV-2012 Inserted No
123 210 P210_CLOSED_ON Date Picker 25-NOV-2012 Inserted No
123 210 P210_CREATED_BY Text Field PAUL Inserted No
123 210 P210_STATUS ID Select List 3 Inserted No
123 210 P210_TICKET_ID_NEXT Hidden 21 Inserted No
123 210 P210_TIGKET_ID_PREV Hidden 2 Inserted No
123 210 P210_TICKET_ID_COUNT Display Only = 20 of 21 Inserted No
1-11

Figure 6-44. Choosing to view page items

127

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

APEX ltems

There are two types of APEX items: page items, which are displayed to the user on a page, and application items,
which hold values in an application but aren’t displayed. When referencing item values in queries, you should use
bind variables. You may also want to reference some of the built-in items that are available.

Page vs. Application Items

APEX page items are the UI controls that let users view and enter data—Text Field, Textarea, Select List, Checkbox,
and so on. Page items are associated with a specific page and have UI properties associated with them; the item is
displayed to the user (or not) according to the Ul properties. Figure 6-45 shows the available APEX page item types.
See the APEX documentation for more information on page item types and their attributes.

| Cancel ‘ Next »

Page: 210 - Manage Tickets

Select Item Type:
() Checkbox () Color Picker () Date Picker (_) Display Image
I —— —
- ' == y
[- > L o,
) Display Only () File Browse. () Hidden () List Manager
—
=@ —
_) Number Field () Password (O Plug-ins () Popup LOV
—
| = ,L\ —_—r|
_) Radio Group () Rich Text Editor () Select List () Shuttle
@ — FEEE===] — =,| =
@ — = hoal -
() Text Field () Text Field with autocomplete () Textarea () Yes/Na
)

Show Unsupported | No ¢ |

Figure 6-45. APEX page item types

Application items aren’t associated with a page and have no Ul properties. They hold values in an application
that are essential but not necessarily displayed. You can use an application item much like a global variable. For
example, you may need to calculate sales tax based on the state the user lives in. You could read that sales tax percent
from a table when the user logs in and keep the value in an application item for use throughout the user’s session.

128

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

The Importance of Bind Variables

When referencing APEX item values, particularly in SQL queries in your APEX application, it’s important to think
about SQL security basics, including SQL injection. Consider the example of an online form that allows a user to sign
on with a username and password, which ultimately executes this query:

SELECT COUNT(*) FROM users
WHERE username = '&username'
AND password = '&password’

If you enter this password
I dont _know OR 'x' = 'x
the resulting SQL is

SELECT COUNT(*) FROM users
WHERE username = 'SCOTT'
AND password = 'I_dont know' OR 'x' = 'x'
This SQL statement erroneously returns 1, indicating True, rather than No data found. The user is allowed in!
Not good. To prevent the injection of unintended SQL, use bind variables in the SQL query, like so:

SELECT COUNT(*) FROM users
WHERE username = :USERNAME
AND password = :PASSWORD

Now try entering the following as your password:
I dont _know OR 'x' = 'x

Unless this entire string is specifically your password, the database returns No data found. Your attempt to sneak
past the login fails.

We recommend the use of bind variables whenever possible. They prevent SQL injection and improve SQL
performance.

Built-In Items

APEX includes several built-in items for referencing key APEX application-wide session-state values. These are set
automatically by APEX and available for reference by the developer throughout APEX. The most common of these are
as follows:

APP_ID: The application identifier of the currently running application
e APP_ALIAS: The application alias of the currently running application
e APP_USER: The currently signed-on user

e APP_SESSION: The session identifier of the currently signed-on user

e APP_PAGE_ID: The currently running page identifier

129

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

APEX URL Syntax

Every APEX page is a call to the APEX engine. Every APEX URL is really a call to a specific page, passing various
parameters. Figure 6-46 shows the URL syntax.

f?p=
APP ID:

APP_PAGE_ID:
APP_SESSION:

REQUEST :
DEBUG :

Clear Cache:
iteml,item?2:

itemValuel,itemValue?2:
printerFriendly

Figure 6-46. APEX URL syntax

£2?p is the call to the ¥ PL/SQL procedure passing the argument p. The argument is actually a concatenation of nine
arguments combined into one, delimited by a colon. The nine elements of the p argument are the same for all APEX
page requests. You may omit one or more of the arguments, but you must include the colon delimiters as placeholders.
The elements that form the p argument are as follows:

APP_ID: The application number or alias

APP_PAGE_ID: The page number or alias

APP_SESSION: The APEX session identifier

REQUEST: The HTML request

DEBUG: A debug flag, set to YES or NO or omitted to use the current value of the debug flag
Clear Cache: Alist of pages for which to clear the cache

Item names: A list of APEX item names, separated by commas

Item values: A list of APEX item values, separated by commas, that correspond in order to the
items specified in the list of item names

Printer Friendly: A flag that determines whether the page is rendered in Printer Friendly mode

It’s easiest to understand the APEX URL syntax by looking at a few examples. Table 6-1 shows several examples
and explains them.

Table 6-1. APEX URL Examples

f?p=8APP_ID. :10:&APP_SESSION.:::10 Calls page 10 of the current application using the current

session and clears the session cache for page 10

f?p=8APP_ID. :5:8APPSESSION. : :NO::P2_ID:1234 Calls page 5 of the current application using the current

session, not in Debug mode, setting the value of P2_ID to 1234

f?p=8APP_ID. :5:&APP_SESSION.: :YES Calls page 5 of the current application using the current

session in Debug mode

130

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Asyou can see, the APEX URL not only supplies directions to the server, but is also your key to what page is being
requested, with what request, and with what values. So how does this URL syntax tie in to your work on the Help Desk
application?

APEX applications store all values in an APEX session, which is securely bound to a specific user and user
session. Values stored in this user session can easily be set or read by a developer. Any item—application or page—can
be easily referenced from anywhere within your APEX application. Values can be referenced and passed to APEX as
part of the p parameter to control which APEX page is rendered and what values are displayed on that page.

As the volume of data in your system grows, you need a quick way to sort through it and control what data is
passed to what page. You can add a page item and then use the value of that item to filter the SQL statement for the
report on page 200 of the application. In fact, an item in APEX can be referenced in a SQL or PL/SQL region, as in the
predicate of a query, by using the bind variable syntax (:P1_ITEM NAME) and as part of the APEX URL.

Getting back to the wizard-generated Tickets report, you can apply what you just learned about session state,
APEX items, and the APEX URL to add a new item called P200_SEARCH that the user can use to filter the report. After
you make these report modifications, you take a closer look at the components and attributes of an APEX report.

Searchable APEX Reports

Reports with Edit links let users scan a list of rows and choose one to modify. Scanning works well for reports that are
short. But when reports are long, especially more than a page or two, it’s time to add some search functionality to help
a user quickly zero in on a record to edit.

Creating a Searchable APEX Report

You've already modified the Tickets report generated by the Master Detail Form Wizard to add sorting, CSV export
capability, and a readable status value. As generated, the report has an Edit link on the first column, which navigates
to a Ticket—Ticket Details master-detail form. For the user to find the correct ticket to edit, you need a search
function. In the next series of steps you add a Search item and a Go button to activate the search, and you modify the
report query to filter on the Search value:

1. Edit Page 200 of the application.

2. Create a new item in the Tickets region by right-clicking the region name and selecting
Create Page Item.

3. Select Text Field, and click Next.

4. Enter P200_SEARCH for the Item Name, as shown in Figure 6-47. Make sure Tickets (10) is
selected as the Region, and click Next.

€ || cancel Next >

Page: 200 - Tickets
Display As: Text Field
*Item Name | P200_SEARCH
* Sequence |710‘

* Region | Tickets (10}

» Iltems

Figure 6-47. Creating a search field

131

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

5. No changes are needed for the Item Attributes. Click Next.

6. Setthe value of Submit When Enter pressed to Yes. Click Next.

7. Accept the defaults on the next page, and click Create Item.

Although you just set the item attributes so that the page is submitted when the Enter key is pressed, it’s still a
good practice to provide a way to submit the page using the mouse. Next you create a new button that, when clicked,
processes the item value, stores it in session state, and then reloads page 200:

8. Create a new Button item by right-clicking the Tickets region and selecting Create Page
Item Button. Be careful not to select Create Region Button, because that would place the
button at the top of the region as opposed to alongside your text box.

9. Enter P200_GO as the Button Name, as shown in Figure 6-48. Leave all the other values
alone, and click Create Button.

< Cancel Create Button Next >

Page: 200 - Tickets
Region: Tickets
* Button Name | P200_GO
*Label Go
Button Style HTML Button

Button Attributes A

Figure 6-48. Creating a Go button for the search function

Next, you'll adjust the report query to apply the P200_SEARCH filter. First you need to convert the query from a
structured report to a SQL report. A structured report is a result returned from the Query Builder. A SQL report is more
flexible, because it allows you to enter any valid SQL, rather than rely on a limited set of declarative options. After you
convert the report to a SQL query, you'll add a line to the query predicate that uses the value stored in P200_SEARCH
as a filter:

10. Edit the Tickets region definition by double-clicking its name.

11. Inthe Tasks region on the right side of the page, click Convert to SQL Query. Click OK
when prompted.

12. Edit the Tickets region again by double-clicking its name.

You now see the Source Region, which contains the SQL Query:

13. Append the following line to the end of the query, and click Apply Changes:
AND UPPER(subject) LIKE '%'||UPPER(:P200 SEARCH)||'%'

14. Runyour report. Remember to test both the button and pressing Enter while editing the
Search field. Both should filter the report correctly.

132

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Adding Reset Pagination

Any time you add a Search item to a page, it’s a very good idea to also add a Reset Pagination process. This prevents
the APEX reporting engine from losing its place in a result set:

1. Edit Page 200 of the application.
In the upper-right section of the page, click the Create button and select Page control on this page.

Select Process, and click Next.

Eal A

Select Reset Pagination, and click Next. You should see the dialog in Figure 6-49.

Page: 200 - Tickets

Point On Submit - After Computations and Validations
*Mame | Reset Pagination
* Seguence | 10

Scope Current Page Pages

When Button Pressed - No Button Condition - +

Condition Type
- Process Not Conditional -

[PL/SQL) [temn / column=value] [tem / column not null] [item / column null] [request=e1] [page in] [page notin| [exists] [never] [none]

Figure 6-49. Specifying process options

5. Ensure that Scope is set to Current Page, and click Create Process.
6. Run the application.

The search function should work when the user presses Enter and when the user clicks the Go button. Butlet’s go
one more step and alter the Subject column so the search term is highlighted in red:

1. Edit Page 200 of the application.

2. Edit the Report Attributes again by right-clicking the Tickets region and selecting Edit
Report Attributes.

3. Edit the Subject column by clicking the Edit icon.

4. Inthe Column Formatting region, enter &200_SEARCH. in the Highlight Words element.
Make sure you include the period (.) at the end. If you forget it, the variable won't be
parsed correctly and therefore the value won'’t be highlighted.

This process uses APEX session state to indicate that the value the user entered into P200_SEARCH should be used
to highlight that same text in the Subject column. Continue as follows:

5. Click Apply Changes.
6. Run the application, and test the search-highlight capability.

Now, when you enter a Search value, the matching rows are returned with the search term highlighted in red.
In just a few minutes, you've created a sortable, searchable report for your Help Desk system. Let’s look at what the
report looks like behind the scenes. Figure 6-50 shows the components as seen from the Application Builder.

133

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

Page Rendering += Page Processing L Shared Components L J

B [Tickets E1 After Submit [Parent Tabs
Before Header L @ Processes i~ 9§ List of Values

After Header = Branches e»s Breadcrumbs
Before Regions =] E Computations Lists
E Regions L. pP210_TICKET ID @ Templates
= Body (3) Validating L @ Security
1S B Processing
Report Columns
B Items es
d5 P200_SEARGH i Reset Pagination
@ P200_GO After Processing
B Region Buttons & AJAX Callbacks
@ CREATE
[# After Regions
B Before Footer
B After Footer

Dynamic Actions

Figure 6-50. The searchable report as seen from the Application Builder

Looking Behind the Scenes—APEX Report

Let’s take a closer look at the components and attribute of the Tickets report. Edit page 200 to view the Page Rendering,
Page Processing, and Shared Components regions of the Application Builder. In the Page Rendering region, you have
a single Tickets region that contains report columns, the two items you just added for search capability, and a Create
button. Double-click the Tickets region name to open the Region Definition page shown in Figure 6-51.

Identification A

Page: 200 Tickets
*Title | Tickets exclude title from translation

Type SQL Query
Source A

Region Source

SELECT
"TICKETS"."TICKET_ID" "TICKET_ID",
"TICKETS"."SUBJECT" "SUBIECT™,
"TICKETS"."DESCR" "DESCR",
"TICKETS"."ASSIGNED_TO" "ASSIGNED_TO",
"TICKETS"."CREATED_ON" "CREATED_ON",
"TICKETS"."CLOSED_ON" "CLOSED_ON",
"TICKETS"."CREATED_BY" "CREATED_BY",
"STATUS_LOOKUP"."STATUS" "STATUS"
FROM
"TICKETS",
"STATUS_LOOKUP"
WHERE "STATUS_LOOKUP"."STATUS_ID" = "TICKETS"."STATUS_ID"
AND UPPER(subject) LIKE '¥'1IUPPER(:P2@@_SEARCH)I|'%"

Page Items to Submit ~

G) Use Query-Specific Column Names and Validate Query
() Use Generic Column Names (parse query at runtime only)

Maximum number of generic report columns:
60

Figure 6-51. The Tickets report region source with the search filter

134

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Here you see that this region type is SQL Query. The source for this region is your SQL query on the TICKETS table
with the modified WHERE clause to add the filter on the P200_SEARCH item, referencing P200_SEARCH as a bind variable.

Clicking the Report Attributes tab at the top of the page, you see a series of attribute regions. A list of table
columns appears in the Column Attributes region, shown in Figure 6-52.

Column Attributes ~
Headings Type: Column Names Column Mames (InitCap) (5} Custom PL/SQL Mone

" TICKET_ID v Edit right % center * ™ - - PN vy
o’ STATUS Status left : center = ™ ™ - PaN vy
& SUBJECT Subject left : center ™ ™ - PN v
" DESCR Description left 3 center & - 2 PN
&/ ASSIGNED_TQ Assigned To left n center + o =) = - T
o GREATED ON Created On left - center *)) = s T
& CLOSED ON Closed On left 3 center * =) =) - S
o~ CREATED_BY Created By left 3 center % o o - T

When moving the last column further down, it will show up as the first column of your report.
When moving the first column up, it will be moved to the end of your report.

Figure 6-52. Column attributes for the Tickets report

This region allows you to adjust the heading, column width, column alignment, and heading alignment; you
can also decide whether the column is shown, whether a sum is required, and whether you want to enable sorting on
the column and, if so, to define a sort sequence. Arrow icons on the right of this region allow a developer to reorder
columns up and down the list.

Click the pencil icon to go to the Column Attributes page, where you can view and edit many more column
attributes, organized in a series of regions. These report and column attributes are described in greater detail later in
this chapter.

In the Shared Components region, you see the expected objects for the parent tab, the breadcrumb, and the page,
region, report, label, and button templates. It's nothing new, but be glad the wizard built these for you.

Next, let’s focus on the Tickets and Ticket Details forms, the other components generated by the Master Detail
Form Wizard.

Looking Behind the Scenes—APEX Master-Detail Forms

Edit page 210 to view the Page Rendering, Page Processing, and Shared Components regions of the Application
Builder. You should see results similar to those in Figure 6-53.

135

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

Page Rendering) Page Processing = Shared Components e
=[] Manage Tickets Bl After Submit [E Parent Tabs
Befor er i € Processes B L lues
B After Bl = Branches s»s Breadcrumbs
[E Ccomputations Go To Page 210 = Lists
Bl € Processes Go To Page 210 15 Templates
i L Fetch Row from TICKETS E [@ Computations Security

L P220_TICKET DETAILS ID

et Next or Previous Primary Key Value
s

® B
B Reg
B Body (3) Ses
El [] Manage Tickets Row of TICKETS
B Items eset page
d= P210_TICKET_ID - After Processing
o P210_SUBJECT Bl & Branches
J= P210_DESCR i Go To Page 200
§5 P210_ASSIGNED_TO . § AJAX Callbacks

d5 P210_GREATED ON
do P210_CLOSED_ON
do P210_CREATED_BY
d= P210_STATUS_ID

2 P210_TICKET_ID_NEXT
2 P210_TICKET_ID_PREV

Figure 6-53. Application Builder showing components for the master-detail report

In the Page Rendering region, you have two After Header processes, a Manage Tickets HTML region that contains
your form items, and a Ticket Details report region.

The two After Header processes, Fetch Row from TICKETS and Get Next or Previous Primary Key Value, do
exactly what their names imply. The Fetch Row from TICKETS process fetches a row from the TICKETS table for
display in the form when the page passes a TICKET_ID. The Get Next or Previous Primary Key Value process gets the
next or previous TICKET_ID value in the series and fires in conjunction with the Next and Previous buttons on the
master-detail page.

The Manage Tickets region holds an APEX item for each of the TICKETS columns you selected to include in the
master-detail form, as well as buttons for cancel, delete, save, create, next, and previous operations.

The Ticket Details region is a report region that displays the ticket details and a Create button that redirects you to
page 220 for creating additional ticket details.

In the Page Processing region, you see two After Submit branches that return you to this same page, an After
Submit P220_TICKET DETAILS_ ID computation, two processes (Process Row of TICKETS and Reset Page), and an
After Processing branch to page 200. The After Submit computation gets the next TICKET_DETAILS ID when you
click the Create button in the Ticket Details region. The new TICKET DETAILS ID is passed to page 220, the Ticket
Details form. The Process Row of TICKETS process performs the database DML operations for insert, update, and
delete operations on the TICKETS table. The Reset Page process resets (clears) the elements of the page when the
Delete button is clicked. The After Processing branch to page 200 redirects the user to page 200, your TICKETS list, on
successful processing.

The Shared Components region includes the by-now familiar APEX elements for your page tabs, lists of values,
breadcrumbs, and templates.

Moving to page 220, the Ticket Details form, in the Application Builder you see elements that look similar to those
for the Manage Tickets form on page 210 (see Figure 6-54).

136

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Page Rendering e Page Processing) Shared Components =
B[] Ticket Details After Submit [Parent T.
Before Header
Bl After Header
[@ Computations
B @ Processes
L. Feteh Row from TICKET_DETAILS
=l Regions
Bef
E Body (3) . GoToPage210
B[] Ticket Details & AJAX Callbacks

B Items
| |- d> P220_TIGKET DETAILS_ID
2 P220_TICKET_ID

o P220_DETAILS

= P220_CREATED BY

§2 P220_GREATED_ON

5 P220_ATTACHMENT
egion Buttons

@ CANCEL

@ DELETE

@ SAVE

@ CREATE

a

o

Figure 6-54. The Application Builder showing components for the Ticket Details form

The Page Rendering region includes an After Header Fetch Row from TICKET_DETAILS process, an HTML
region that contains items for each of the TICKET_DETAILS columns you selected to include in your master-detail
form, and buttons for processing.

The Page Processing region includes a Process Row of TICKET_DETAILS process for handling inserts, updates,
and deletes on the TICKET_DETAILS table, a Reset Page process to clear the rows on a Delete transaction, and a Go to
Page 210 branch that returns the user to the Tickets page on completion of a Ticket Details transaction.

The Shared Components region on the Ticket Details page includes your page tabs, breadcrumbs, and templates.

Wow! The Master Detail Form Wizard created a lot—a fully functional report with master-detail forms, all with
no code on your part. This master-detail example underlines the time-saving value of the APEX wizards in generating
APEX components, particularly when creating more complex and multipage components for an application.

More on APEX Forms

When creating forms, the APEX wizards do about 80% of what you want them to do. The last 20% of fine-tuning is up
to you, the developer. In this section you make a number of small changes to the Manage Tickets and Ticket Details
forms, with the overall goal of increasing usability.

Item Layout

APEX 4.2 provides two ways to adjust item layout: adjusting certain item attribute settings, and dragging items in the
tree view. You'll use both of these methods to adjust the Manage Tickets and Ticket Details forms.

Note The Drag & Drop Layout tool that has been present in previous versions of APEX has been removed from APEX
4.2 due to the new Grid Layout method. A new Drag & Drop Layout tool that conforms to the Grid Layout is expected to be
released with a future version of APEX.

APEX lays out Form items using standard HTML tables and refers to them as grids. Think of a grid as a coordinate
system where items are placed either next to one another or above one another. This grid layout may seem limiting,
but you can rearrange items using the grid attributes of items. In this section you use the grid attributes of the items on
your page to move the Assigned To, Created On, and Created By items to a single row.

137

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

You begin by adjusting the Manage Tickets form layout by altering the item P210_CREATED_ON so it’s
automatically populated with today’s date. Then you set it so it always displays in read-only mode, preventing users
from making any changes:

1. Edit Page 210 of the application.
2. Edit the item P210_CREATED_ON by double-clicking its name.

3. Inthe Default Value section in Figure 6-55, enter SYSDATE as the Default Value and set
Default Value Type to PL/SQL Expression.

Default A

Default value
SYSDATE

Default Value Type
P‘\I_ISQL Eicpresslon

Figure 6-55. Specifying a default value for a date

4. Inthe Read Only section in Figure 6-56, set Read Only Condition Type to Always.

Read Only A
Read Only Condition Type

Always

[PL/SQL] [item / column=value] [tem / column not null] [item / column null] [request=e1] [page in] [page notin] [exists] [never] [always] [none]

Read Only Element Table Cell(s) Attributes

Figure 6-56. Setting the read-only condition

5. Scroll to the top of the page, and click Apply Changes.

You're also going to alter P210_CLOSED_ON. In order to reduce errors, you can use a little-known HTML
attribute to make the actual input field read-only. The user is then forced to use the date picker pop-up:

6. Edit the item P210_CLOSED_ON by double-clicking its name.

7. Inthe Element region, enter 12 for Form Element Width.

8. Add the following text immediately after the existing text in the HTML Form Element
Attributes field (as shown in Figure 6-57) :

readonly="readonly"

138

Element

Horizontal / Vertical Alignment

Form Element Width

Value Placeholder

HTML Form Element CSS Classes

HTML Farm Element Attributes

Pre Element Text

Post Element Text

CHAPTER 6

Left

12 | Maximum Width 255

A

:midb_item_change(this)" readonly="readonly'| | ~

Figure 6-57. Setting the width and adding an HTML form element

9. Click Apply Changes.

Placing Multiple Items in the Same Row

FORMS AND REPORTS—THE BASICS

Now rearrange the items on the page so they aren’t in a single column but rather are arranged with multiple items in

the same row:

1. Edit Page 210.

2. Using your mouse, click and drag P210_CREATED_BY so it’s positioned directly under
P210_CREATED_ON in the tree. If you try to drag the item to outside the bounds of the
tree, a red X is displayed (see Figure 6-58). When the position indicator is in the right place,
and you see a green check mark indicating a valid position, release the mouse button to

reposition the field.

Page Rendering
Bl Baay (3]

(o]

B ltem

B 6 0 F 5 5B T 5D T

=] B Manage Tickets

P210_TICKET_ID
P210_SUBJECT
P210_DESCR
P210_ASSIGNED_TO
P210_CREATED_ON
P210_CLOSED_ON
P210_CREATED BY
P210_STATUS_ID
P210_TICKET_ID_NEXT
F210_TICKET_ID_FREV
P210_TICKET_ID_COUNT

» P210_CREATED_BY

El Region Buttons
LA CANCE

Figure 6-58. Repositioning P210_CREATED_BY by clicking and dragging in the tree

139

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

3. When you've positioned the fields correctly, the tree looks like Figure 6-59.

Page Rendering]
B Baay 3]

B[] Manage Tickets

B Items

P210_TICKET_ID

- = P210_SUBJECT

- g3 P210_DESCR

- 2 P210_ASSIGNED_TO
d= P210_CREATED ON

P210_CREATED_BY

P210_CLOSED ON
P210_STATUS_ID
P210_TICKET_ID_MEXT
P210_TICKET_ID_PREV

- F210_TICKET_ID_COUNT
E Region Buttons
L CANCE

=
. E2
o=

=

ﬁ H

Figure 6-59. Using Drag & Drop within the Page Rendering tree

Now you need to make sure the Assigned To, Created On, and Created By fields are displayed on the same line:
4. Edit P210_CREATED_ON by double-clicking its name in the tree.
5. Inthe Grid Layout section, set Start New Row to No.
6. When the region refreshes, make sure New Column is set to Yes.
7

At the top of the page, use the > button to navigate to the next field in the list
(P210_CREATED_BY).

8. Inthe Grid Layout section, set Start New Row to No.
9. When the region refreshes, make sure New Column is set to Yes.

10. Click Apply Changes.

Implementing LOVs

Next, you'll tie the lists of values (LOVs) that you created in Chapter 4 to the P210_ASSIGNED_TO and
P210_CREATED_BY items on the form. You tie in the LOVs prior to fine-tuning the layout, so the layout is based
on the select-list items:

1. Edit Page 210 of the application.
Edit the item P210_ASSIGNED_TO by double-clicking its name.

In the Identification section, set Display As to Select List.

>« N

In the List of Values section (see Figure 6-60), set Named LOV to TECHS, set Display
Extra Values to No, set Display Null Value to Yes, enter - Select a Tech - for Null
Display Value, and click Apply Changes.

140

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

List of Values A

Named LOV TECHS
Display Extra Values No
Display Null Value | Yes *
Null Display Valug | - Select a Tech -| | Mull Return Value
Cascading LOV Parent [temys) ~

List of values definition

Create or edit static List of Values Create Dynamic List of Values

List of Values Examples
Figure 6-60. Setting LOV attributes

5. Edit the item P210_CREATED_BY by double-clicking its name.

6. Inthe Identification section, set Display As to Select List. In the List of Values section, set
Named LOV to USERS, and then click Apply Changes.

7. Run the application.
You should see results like those in Figure 6-61. Notice how the Description and Subject fields are pushing

out the Created On field.

Manage Tickets

| Cancel || Delete || ApplyChanges || < || = |

Subject Cannot log into E-Mail

User called and cannot log into his M5 Outlook e-mail Account

Description

Assigned To | Scott 3 # Created On 25-NOV-2012 Created By | Paul
Closed On 25-NOV-2012
Status | OPEN

20 of 21

Figure 6-61. The Manage Tickets form using the new field placement

If you look at the page using the browser’s Web Developer add-on and outline the table cells, it looks
like Figure 6-62.

141

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Manage Tickets

\‘ Cancel 4| |~ Delete 4| |~ Apply Changes HT\ \T|

BT * Subject|| BT Cannot log into E-Mail]

User called and cannot |og into his M5 Outlook e-mail Account

BT S Description|

B S Assigned To||GTS | Scou s
BT =Closed On) 25-NOV-2012
EiSstatus||[E¥R oPen ¢ |

|m |EE=20 0f 21

|* Created Dn”zs—Nov-zmzHCreated By”l Pl :

Figure 6-62. The Manage Tickets form with table cells outlined

Notice that there is a lot of whitespace between Assigned To and Created On. You can resolve this a couple of
ways. If the Description text area is a static size (that is, not resizable by the user), you can alter the number of columns
that the Subject and Description fields take up by altering their colspan value. This allows the Created On field to
begin immediately after the Assigned To field:

8. Edit the item P210_SUBJECT by double-clicking its name.

9. Inthe Grid Layout region, as shown in Figure 6-63, set Column Span to 4, and click
Apply Changes.

Grid Layout N

Start New Grid [No =]
Start New Row | Yes + |
Column | Automatic # |
Column Span |ﬁ| Row Span

Column Attributes A

Figure 6-63. Altering Column Span to reduce whitespace

10. Edit the item P210_DESCR by double-clicking its name.
11. Inthe Grid Layout region, set Column Span to 4, and click Apply Changes.

12. Once again, run the application, and notice the difference in how the items are laid out on
the page now. You should see results like those in Figure 6-64.

142

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Manage Tickets

| Cancel || Delete || Apply Changes || < || > |

* Subject | Cannot log into E-Mail

User called and cannot log into his MS Outlook e-mail Account
Description
4
Assigned To | Scott 3 # Created On 25-NOV-2012 Created By | Paul
Closed On 25-NOV-2012
Status | OPEN

200f 21

Figure 6-64. Corrected layout for the Manage Tickets form

However, if the Description text box is resizable, doing so causes the items in the form below it to float to the right
as the size of the Description text area increases, as illustrated in Figure 6-65.

Manage Tickets

| Cancel || Delete || Apply Changes | |Z\ |z\
* Subject |Cannot log into E-Mail
User called and cannot log into his MS Outlook e-mail Account|
Description
4
Assigned To | Scott 3 # Created On 25-NOV-2012 Created By | Paul

Closed On 25-NOV-2012
Status | OPEN

200f 21

Figure 6-65. Floating Created On and Created By items in the Manage Tickets form

Starting a New Grid

Because of the resizable Description text area, using colspan to align elements isn’t sufficient. To prevent the floating
columns caused by resizing the text area, you need to tell APEX to start a new grid. Doing so resets the table column
widths, which improves the item alignment:

1. Edit Page 210.
2. Edit the item P210_ASSIGNED_TO by double-clicking its name.

3. Inthe Grid Layout section, set Start New Grid to Yes. See Figure 6-66.

Grid Layout ~

Start New Grid Yes
Column Automatic 3
Column Span Automatic * Row Span

Column Attributes A

Figure 6-66. Starting a new grid

143

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

4,
5.

Click Apply Changes.

Run the application and notice the difference in how the items are now aligned alongside
each other, as shown in Figure 6-67.

Manage Tickets

[Cancel J[Delete JL Apply Changes JL;J L;J

+ Subject |Cannot log into E-Mail

User called and cannot log into his M5 Outlook e-mail Account

Description

AssignedTo [Scott 5 | # Created On 26-NOV-2012 Created By | Paul &
Closed On 25-NOV-2012
Status [OPEN ¢ |
20 of 21

Figure 6-67. Manage Tickets form with corrected item alignment

Regardless of how the user resizes the Description text area, the Created By and Created On fields remain aligned.

Master-Detail Cleanup

You need to make a few more minor tweaks to the master-detail report and form. Let’s start by hiding the TICKET_ID
column from the detail report and form. At the detail level, TICKET _ID is the foreign key and should not be an editable item:

1.
2.

144

Edit Page 210 of the application.

Edit the Ticket Details report attributes by right-clicking the region name and selecting
Edit Report Attributes.

Hide the TICKET ID column by unchecking the value in the Show column.

Enable sorting for the DETAILS, CREATED_ON, and CREATED_BY columns by selecting the
corresponding check boxes in the Sort column. These changes are shown in Figure 6-68.

Column Attributes ~

Headings Type: () Column Names (_) Golumn Names (InitCap) (&) Gustom (_) PL/SQL (_) None

" TICKET DETAILS.ID v Edit [right *| |center 2| o @] O [= 3] av
2" TICKET.ID Ticket Id [vight =| |center 2| [o o [& =oaw
& DETAILS Details [left | [center z| & o ® (3 av
&’ CREATED BY Created By [left | [center z| & o & [3 av
" CREATED_ON Created On [left 3] [center 3| & o & [3 av
& ATTAGHMENT Attachment [left 3] [center 3| & 0 0O [_3 av

When moving the last column further down, it will show up as the first column of your report.
When moving the first column up, it will be moved to the end of your report.

Figure 6-68. Hiding the ticket ID and specifying Sort columns

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

5. Click Apply Changes.
Finally, make a few small changes to the items on page 220:

1. Edit Page 220 of the application.
Edit the item P220_TICKET_ID.
In the Identification region, set Display As to Hidden, and click Apply Changes.
Edit the item P220_DETAILS.
In the Element region, set Form Element Height to 5, and click Apply Changes.
Edit the item P220_CREATED_ON.

N o o &~ e Db

In the Default section in Figure 6-69, enter SYSDATE as the Default Value. Then set Default
Value Type to PL/SQL Expression.

Default P

Default value
SYSDATE

Default Value Type
PL/SOL Expression

Figure 6-69. Specifying the default date

8. Inthe Read Only section, set Read Only Condition Type to Always (see Figure 6-70).

Read Only ~

Read Cnly Condition Type
Always

[PL/SCL] [item / column=value] [item / column not null] [item / column nul] [request=e1] [page in] [page notin] [exists] [never] [always] [none]

Read Cnly Element Table Cell{s) Attributes

Figure 6-70. Specifying a read-only condition type

9. Scroll to the top of the page, and click Apply Changes.
10. Edit the item P220_CREATED_BY.

11. Set Display As to Select List. In the List of Values section, set Named LOV to TECHS, set
Display Extra Values to No, set Display Null Values to Yes, enter - Select a Tech - for
Null Display Value, and then click Apply Changes. See Figure 6-71.

145

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

List of Values A

MNamed LOV TECHS
Display Extra Values No %
Display Null Value | Yes $
Null Display Value | - Select a Tech -| ‘ Null Return Value
Cascading LOV Parent ltemis) A

List of values definition

Create or edit static List of Values Create Dynamic List of Values

List of Values Examples
Figure 6-71. Controlling the LOV

12. Run the application.

Your master-detail report and form are now complete. Using the Master Detail Form Wizard, you generated
areport and master-detail form on the TICKETS and TICKET_DETAILS tables. You modified the report to contain a
user-friendly status value, sortable columns, and your preferred date formats. You modified the Manage Tickets and
Ticket Details forms to order items on the page, use text areas, and select lists. Along the way, you reviewed the APEX
components that make up your report and forms, as well as the form, report, and column attributes available for
customizing forms and reports to suit your needs.

APEX Help

Providing help to end users is an often forgotten and typically tedious task. Developers typically take the easy
route and skip it altogether. Or the task is minimized or cut at the end of a project. Although APEX can’t magically
incorporate help into your applications, it does make it a lot easier for you, as a developer, to do.

Adding a Help Text Region

The APEX Help Text region automatically displays any associated help text for a given page and its items. It can be
placed on any page, including a Global Page. Although you can choose a region template for a Help Text region, there
is no way to change the style of the actual text. As an example, let’s add a Help Text region to page 210 as a subregion
to the master Edit region:

1. Edit Page 210 of the application.

2. Create a new region by clicking the Create button at upper right on the page and selecting
Region on this page from the drop-down menu.

3. Select Help Text, and click Next.

4. Enter Help for the Title, set Region Template to Hide and Show Region, set Parent
Region to Manage Tickets (0), and click Next. See Figure 6-72.

146

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

€ || cancel Next >

Page: 210 - Manage Tickets
Region Source Type: Help Text
*Title Help
Region Template Hide and Show Region
Parent Aegion | Manage Tickets (0) * |

* Sequence 20

» Top Region Templates
Figure 6-72. Creating a Help Text region

5. Click Create Region.

Notice that when you run page 210, you see the region title Help rendered with a > next to it at the bottom of the
Manage Tickets region. The newly created Help region was created as a subregion, and therefore it appears within its
parent region. Clicking the > expands the region; thus, the help text is only displayed when the user explicitly requests
it. Currently, the Help region doesn’t have any help text. You seed the item-level help text in the next section. You can
add page-level help by editing the page definition and entering text into the Help Text input of the Help section.

Seeding Help Text

Notice that not all the items are shown in the Help region. This is due to the fact that some help text was added to
this region when the UI Defaults were defined, but the other items’ help text is still empty. Help text defined in the
UI Defaults is automatically pulled into any form that is built using those defaults. You can manually add help text
by editing each item. You can also seed any APEX items that don’t have help text already assigned using yet another
APEX wizard:

1. Atupper right in the Application Builder, click the Application Utilities icon, as shown in
Figure 6-73, to go to the Application Utilities home page.

Q, Search Application

F-n;cEICuﬁéy:urh;\'B

JApplication Utilities |
] Il T nTIR ALK

Figure 6-73. Locating the Application Utilities icon

2. Inthe Page Specific Utilities region at right of the page, click Item Utilities.

3. Click Grid Edit of all Item Help Text.

147

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

The report here shows only those items that already have help text associated with them. However, you can use
one of the buttons on this form to seed all empty help text in your application with a single default value. There is no
perfect value with which to seed the help text, but something like “Need Help Text” indicates that the help for that
item needs to be entered:

4. Click Seed Item Help Text.

5. Enter NEED HELP TEXT for Default Help Text in the Seed Item Help section, as shown
in Figure 6-74, and click Apply Changes.

Seed Item Help

Use this utility to set help text for all items in the current application that currently have no help text.

Default Help Text | NEED HELP TEXT]|

Cancel Apply Changes

Figure 6-74. Seeding item help

The help text has been seeded, and you're taken back to the main report. From here you can narrow the items
that are displayed and edit the help text directly:

6. Inthereport filter section at the top of the page, enter 210 for Minimum Page Number,
and click Go.

At this point, you're viewing all the help text for any item on page 210 or greater in a single interface. Feel free to
change the values for any of the items on page 210 to see them in the Help region.

Once you've altered and saved your help, run page 210. Note that if you click an individual item’s label on page 210,
a pop-up window appears, displaying the help specific to that item.

The APEX Help Text region automatically displays the help text for a given page and its associated items. Display
of the help text is managed by APEX behind the scenes. Although it isn’t very robust—there is no way to alter the look
and feel of the region with templates or otherwise—there is now no excuse for not adding help to your application.

Declarative BLOBS

In Oracle, BLOB stands for Binary Large Object and is a data type designed to store files. APEX has streamlined how
you can manage BLOB columns with a feature called Declarative BLOBs. The APEX wizards recognize a BLOB column
and automatically alter the related APEX item and report to interact seamlessly with the column. Why do you care
about BLOB columns? Using BLOB columns allows you to easily upload and download files, such as documents,
spreadsheets, and images, into your applications.

148

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Plan ahead when using the Declarative BLOBs feature. At design time, include these columns in tables that will
use declarative BLOBs:

e FILENAME: Stores the actual file name that is used when a user downloads the file

e MIME_TYPE: Stores the type of the file so browsers know which application to launch
(Word for .doc, Excel for .x1s, and so on)

e LAST_UPDATED: Stores the date the BLOB was last updated

e CHARACTER_SET: Stores the character set of the BLOB, which is essential for indexing and
processing data that resides within the BLOB

The first two columns are essential for reading data out of the BLOB when needed. APEX uses the Number/Date
format column attribute of the BLOB column to map these attributes to the BLOB column stored in the database.

If you add a BLOB column after creating a report or form using a wizard, you have to manually set the column or
item properties to integrate BLOB processing.

Because you added a BLOB column to the TICKET_DETAILS table when you ran the SQL script, some things have
been done for you. But you still need to do several things to use declarative BLOBs properly. First, you have to map the
FILE_NAME and MIME_TYPE columns to the form that is used to upload the document, so these details are saved in the
database. Let’s address the form on page 220 first:

1. Edit Page 220 of the application.

2. Edit the item P220_ATTACHMENT. In the Settings section, you see the fields
shown in Figure 6-75.

Settings ~
Value Required No %
Storage Type BLOE column specified in Item Source attribute
MIME Type Column MIME_TYPE
Filename Golumn | FILE_NAME
Character Set Column
BLOB Last Updated Golumn

Display Download Link Yes *

Download Link Text | Download|

Content Disposition Attachment +

Figure 6-75. Specifying BLOB settings

3. Inthe Settings region, enter MIME_TYPE for MIME Type Column, FILE_NAME for Filename
Column, and Download for Download Link Text.

4. Click Apply Changes.
Next, alter the report on page 210:
1. Edit Page 210 of the application.
2. Edit the Ticket Details region by double-clicking its name.

3. Inthe Tasks region, click Convert to SQL Query. When prompted, confirm your action by
clicking OK.

149

CHAPTER 6 - FORMS AND REPORTS—THE BASICS

4, Edit the Ticket Details region again by double-clicking its name. You see the source of the
query.

5. Locate and open the file ch6_report.txt, which you can find where you extracted the
class files earlier, and copy the contents into the Region Source, replacing all text that is
currently there. See Figure 6-76.

Source A~

Region Source

SELECT
"TICKET_DETAILS"."TICKET_DETAILS_ID" "TICKET_DETAILS_ID",
"TICKET_DETAILS"."TICKET_ID" "TICKET_ID",
"TICKET_DETAILS"."DETAILS" "DETAILS",

"TICKET_DETAILS"."CREATED_ON" "CREATED_ON",
"TICKET_DETAILS"."CREATED_BY" "CREATED_BY",
dbms_lob.getlength{"ATTACHMENT") "ATTACHMENT"

FROM
"TICKET_DETAILS"

WHERE (("TICKET_DETAILS"."TICKET_ID" = :PZlB,TlCKET,lD))l

Page [tems to Submit =

(®) Use Query-Specific Column Names and Validate Quary
Use Generic Column Names (parse query at runtime only)

Maximum number of generic report columns:
60 L

Figure 6-76. Entering the report query with a BLOB column

Notice the change in the last column in the SQL statement. Using dbms_lob.getlength indicates to APEX
whether the ATTACHMENT BLOB column contains any data. If it does, the query returns a number greater than 0.

Now you need to alter the report column to display a link allowing the end user to download any document that
may have been uploaded:

6. Click the Report Attributes tab. Doing so saves all changes you just made on the Region
Definition tab.

7. Edit the ATTACHMENT column, and scroll to the Column Attributes section.

In order for the report column to recognize the fact that it’s supposed to be displayed as a BLOB, you must
indicate that the format for the field is a BLOB by entering the word BLOB in the Number/Date Format field:

8. Inthe Column Attributes section, enter the word BLOB into the Number/Date Format
field, and press Tab. The page refreshes, and the Blob Column Attributes section is now
visible on the page.

9. Inthe Blob Column Attributes section, enter TICKET_DETAILS for Blob Table, ATTACHMENT
for Blob Column, TICKET _DETAILS ID for Primary Key Column 1, MIME_TYPE for
Mimetype Column, FILE_NAME for Filename Column, and Download for Download Text
as shown in Figure 6-77.

150

CHAPTER 6 = FORMS AND REPORTS—THE BASICS

Blob Column Attributes ~

* Format Mask | DOWNLOAD
*BlobTable TICKET_DETAILS
* Blob Column ATTACHMENT
* Primary Key Column 1 TICKET_DETAILS_ID
Primary Key Column 2
Mimetype Golumn | MIME_TYPE
Filename Column | FILE_NAME
Last Updated Golumn
Character Set Column

Content Disposition | Attachment %

Download Text ‘ pownload |

Figure 6-77. Modifying the BLOB column attributes

10. Scroll to the top of the page, and click Apply Changes.

Run the application. Test the file upload and download capabilities by attaching a file to one of the Ticket Details
records and then downloading it from the report.

This ability to easily upload and download files in APEX is extremely useful in building web applications where
users need to upload and download data for whatever purpose. The Declarative BLOBs feature of APEX makes it
simple for developers to add upload and download capabilities to an application.

Summary

You've reviewed most of the APEX form and report types and walked through building various forms and reports
for your Help Desk system using the APEX form and report wizards. Along the way, you've learned about APEX
items, session state, the APEX URL syntax, adding help to APEX pages, and incorporating upload and download
functionality by using the Declarative BLOBs feature. That’s a lot to digest, but the APEX wizards have done most of
the work for you.

The common theme is that the APEX form and reports wizards are huge time-savers for developers, creating all
the objects—items, buttons, branches, processes, and so on—needed for a working form or report. You can then alter
the created objects to quickly customize the form or report to suit your needs.

Still, you haven't strayed far from what APEX builds for you, and you've covered only the simplest types of forms
and reports. The next chapter looks at more complex types of APEX forms and reports, also generated by wizards.

151

CHAPTER 7

Forms and Reports—Advanced

This chapter focuses on more complex types of forms and reports; it also introduces charts and maps. Although these
are more complex types of forms and reports, they're most often created by using the APEX form and report wizards.

In the sections that follow, you learn how to use the APEX form and report wizards to add pages to your Help
Desk application to manage multiple tickets on a single page, allow some interactive analysis of ticket data, and
visualize tickets by date and status. To do so, you create a tabular form, an interactive report, a calendar, and a pie
chart, each demonstrating one of the more advanced types of APEX forms and reports.

Tabular Forms

Tabular forms allow users to edit both rows and columns of data at once, much like a spreadsheet. The developer
can choose a different element type for each column—text box, text area, select list, check box, radio group, and so
on. Users can make changes to multiple data elements and submit them as a single transaction. APEX tabular forms
handle inserts, updates, and deletes—all with no code!

The APEX wizards create all of the required elements for a fully operational tabular form. Like all APEX forms,
there is no logical relationship between items that make up a tabular form. Once the wizard creates the items,
they're indistinguishable from other APEX page items and can be modified independently of one another. However,
we recommend exercising caution when making modifications to items generated by an APEX wizard; doing so can
cause the tabular forms to become inoperable.

You can bypass the wizard and create your own tabular forms. As your application becomes more sophisticated,
you may find it more efficient to create forms manually. However, this book focuses on the wizard approach.

Creating a Tabular Form

In this section you create a new page that contains a tabular form based on the TICKETS table. The form allows
multiple tickets to be edited on the same page. You then alter the display properties of the tabular form columns.
Proceed as follows:

—y

Edit any page in your application.
Click the Create button at upper right on the page, and select New Page from the menu.
Select Form, and click Next.

Select Tabular Form, and click Next.

A

Select your schema for Table/View Owner, and then select TICKETS for
Table/View Name.

6. Set Allowed Operations to Update, Insert and Delete.

153

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

7. By default, all the columns are already selected, as shown in Figure 7-1. Click Next.

Cancel Next)»

This wizard builds a form to perform update, insert, and delete operations on multiple rows in a database table.

* Table / View Owner [APRESS 2

* Table/ View Name | TICKETS (table))

* Salect Columns TICKET_ID (Number)
SUBJECT (Varchar2)
DESCR [Varchar2)
ASSIGNED_TO (Varchar2)
CREATED_ON (Date)
CLOSED_ON (Date)
CREATED_BY (Varchar2)
STATUS_ID (Number}

Raov¥g

R S

Allowed Operations Update, Insert and Delete +

Use User Interface Defaults: () No (@) Yes

Figure 7-1. Selecting columns for a tabular form

8. SetPrimary Key Type to Select Primary Key Column(s).

9. SetPrimary Key Column 1 to 1. TICKET_ID (Number), and click Next.
10. Set Source Type to Existing Trigger, and click Next.

11. Select all columns as Updatable Columns, as shown in Figure 7-2, and click Next.

€ || cancel Next)»

Owner: APRESS
Table Name: TICKETS

Primary Key Column 1: TICKET ID

* Updatable Columns SUBJECT (Varchar2)
DESCR (Varchar2)
®» ASSIGNED_TO (Varchar2)
9 |CREATED_ON (Date)
CLOSED_ON (Date}
CREATEDC_BY (Marchar2)
@ sTATUSID (Numben

[SRET=]

Figure 7-2. Selecting updatable columns for a tabular form

12. Enter 230 for Page and Manage Multiple Tickets for Page Name and Region Title as
shown in Figure 7-3.

154

13.
14.

15.

16.
17.

18.

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

(Cancel

Next)

If the page you specify does not exist, the page will be created
Owner: APRESS
Table Name: TICKETS
*Page |230
* Page Name | Manage Multiple Tickets
* Region Title Manage Multiple Tickets
= Region Template Reports Region
Report Template template: Standard

Breadcrumb Breadcrumb

Figure 7-3. Identifying page and region attributes for a tabular form

Set Breadcrumb to Breadcrumb.

When the page refreshes, set Entry Name to Manage Multiple Tickets and Parent Entry
to Tickets by clicking the Tickets link (as shown in Figure 7-4), and click Next.

Create Breadcrumb Entry
Entry Name | Manage Multiple Tickets

Parent Entry | Tickets

[No parent breadcrumb entry]

Figure 7-4. Creating a breadcrumb entry for a tabular form

For Tab Options, select Use an existing tab set and reuse an existing tab within that

tab set. When the page refreshes, set the Tab Set to TS1 (Home, Tickets), set Use Tab to
TICKETS, and click Next.

Change Submit Button Label to Save Changes and Add Row Button Label to Add Tickets.

Set Branch to Page for the Cancel button to 200 and Branch to Page for the Submit button
to 230, as shown in Figure 7-5, and click Next.

£ || Cancel Next »

Page: 230
Owner. APRESS
Table Name: TICKETS
Cancel Button Label | Cancel Branch to Page | 200
Submit Button Label | Save Changes Branchto Page | 230 A
Delete Button Label | Delete

Add Row Button Label Add Tickets

Figure 7-5. Specifying button labels and branching for a tabular form

Click Create.

155

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Modifying a Tabular Form

Your tabular form works, but you need to make some cosmetic modifications so you can better control what data is
entered into it. First, move the Add Tickets button to the top of the page:

1.
2.
3.

Edit Page 230 of the application.
Edit the Add button by double-clicking its name.

In the Displayed section, set Button Position to Region Template Position #CHANGE#,
and click Apply Changes.

Next, you'll make some changes to the columns of the report.

4,

10.
11.
12.

156

Edit the Report Attributes of the Manage Multiple Tickets report by right-clicking the
name of the report and selecting Edit Report Attributes.

Uncheck the Show check box for TICKET ID DISPLAY, and then make sure all the
Sort check boxes for all displayed columns except [row selector] are checked, as shown
in Figure 7-6.

& [row selector] v Select Row left o center *)

& TICKET_ID v [Ticket1d right

" TICKET_ID_DISPLAY Ticket Id left

& SUBJECT v' [subject left &) o
" DESCR v Description left ™)
o/ ASSIGNED_TO v [Assigned To left & &
&’ GREATED ON v [Created On left o)
&’ CLOSED_ON v [Closed on left o) o
o/ CREATED_BY v [Created By left & &
& STATUS.ID v’ [status right ~ o

Figure 7-6. Tabular form of column attributes

Edit the SUBJECT column by clicking the edit icon.

In the Column Attributes region, set Display As to Text Area, Element Width to 20, and
Number of Rows to 3, and click Apply Changes.

Edit the DESCR column.

In the Column Attributes region, set Display As to Text Area, Element Width to 20, and

Number of Rows to 3, and click Apply Changes.

Edit the ASSIGNED_TO column.
In the Column Attributes region, set Display As field to Select List (Named LOV).

In the List of Values section, set Named LOV to TECHS, and Display Extra Values to
No, Display Null to Yes, and enter - Select a Tech - for Null Display Value, as shown in
Figure 7-7. Then click Apply Changes.

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

List of Values T

Named LOV TECHS
Display ExtraValues | No % Display Null | Yes 3
Null display value | - Select a Tec Mull return valug

List of values definition

Figure 7-7. Specifying a LOV for the ASSIGNED _TO column

13. Edit the CREATED_BY column.
14. In the Column Attributes region, set the Display As field to Select List (Named LOV).

15. In the List of Values section, set Named LOV to USERS, Display Extra Values to No, and
Display Null to Yes, and enter - Select a User - for Null Display Value, as shown in
Figure 7-8. Then click Apply Changes.

List of Values A~

MNamed LOV USERS
Display Extra Values No = Display Mull Yes *
Mull display value | - Select a Use Mull return value

List of values definition

Figure 7-8. Specifying LOV attributes for the CREATED_BY column

16. Edit the STATUS_ID column.

17. Inthe Tabular Form Attributes region, set Default Type to PL/SQL Expression or
Function and enter get_status ('OPEN') for Default, and click Apply Changes.

Next, you need to create a button on page 200 that links to your new tabular form:
1. Edit Page 200 of the application.
2. Create a new button by right-clicking the Region Buttons node and selecting Create.

3. Enter MANAGE_MULTIPLE_TICKETS for Button Name and Manage Multiple Tickets
for Label, and select Template Based Button for Button Style and Button for
Button Template, as shown in Figure 7-9. Click Next.

157

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

‘ (H Cancel ‘

Page:
Region:

* Buton Name

* Label

Button Style
Button Template
Button Type

Button Attributes

Figure 7-9. Specifying button attributes

4. Set Position to Region Template Position #CREATE#, and click Next.

5. SetAction to Redirect to Page in This Application and Page to 230, select

200 - Tickets

Tickets

MANAGE_MULTIPLE_TICKETS

[Cancel] [Next] [Previous] [Apply] [Submi] [Delete] [Finish] [Create] [Reset]

Manage Multiple Tickets

Template Based Button *

| Button

Normal =

Create Button |

Reset Pagination for This Page, as shown in Figure 7-10, and click Create Button.

‘ (H Cancel ‘

Page:
Region:
Button Name:

Action

* Page

Reguest
Clear Cache
Set these items.

‘With these values

200 - Tickets
Tickets
MANAGE_MULTIPLE_TICKETS

Redirect to Page in this Application

|230] ~

@ reset pagination for this page

{comma separated page numbers)

& (comma separated name list)

4 (comma separated value list)

Create Button |

Use the clear cache attribute to remove session state for a comma separated list of pages. The following clear cache syntax is also available:

+ RIR - Reset Interactive Report
+ CIR - Clear Interactive Report

Figure 7-10. Specifying button action attributes

At this point, you should be able to navigate to your tabular form from page 200 by clicking the Manage Multiple

Tickets button.

158

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Looking Behind the Scenes

Let’s take a look at what the Tabular Form Wizard has created for you—the contents of your tabular form. Edit
page 230 to view the Application Builder page for your tabular form. The Application Builder page will look similar to
the one shown in Figure 7-11.

Page Rendering o Page Processing o Shared Components Ed

B[] Manage Multiple Tickets

s ons
Reqgions i SUBJECT not null
B Body (3) i CREATED_ON not null
= B Manage Multiple Tickets CREATED_ON must be a valid date

eport Columns i CLOSED_ON must be a valid date

egion Buttons i STATUS_ID must be numeric
@ CANGEL [Processing

- @ MULTI_ROW_DELETE c Branches
@ suBMIT E & Processes

- @ ADD i ApplyMRU

S E lyMAD

F Aftel SSing

After Footer E = Branches

Dynamic Actions L. Go To Page 230

« @3 AJAX Callbacks

Figure 7-11. The Application Builder page for the tabular form

In the Page Rendering region, APEX has created a report region. But you created a form, didn’t you? Despite its
name, a tabular form is actually a SQL report with certain column-level options enabled and some processes added to
handle data manipulation.

In the Page Processing region, in the Processing section, you see two processes, ApplyMRU and ApplyMRD.
These special types of processes handle the multiple-row inserts and updates (ApplyMRU) and deletes (ApplyMRD)
on the TICKETS table. These processes handle all DML operations on the TICKETS table for you.

APEX has also created validations for several of the columns, which are created automatically based on the
TICKETS table column definitions plus any UI Defaults defined on the TICKETS table.

In the Shared Components region are the usual page and tab templates that are the defaults for your application.

As you can see, the ApplyMRU and ApplyMRD processes make the difference between the report region being a
static report region and a fully functional tabular form. And it’s so much easier to let the APEX wizard create all this
for you!

Interactive Reports

Your ticket report is what'’s called a classic report. It's the original style of APEX report and still has practical application
in a variety of situations when the requirement is for a simple list of data with no interactivity. Most applications,
including APEX itself, now employ the APEX interactive report.

Introduced in APEX 3.1, the interactive reports feature allows APEX to quickly and easily include user-driven
ad hoc capabilities in your applications. Interactive reports are greatly enhanced in APEX 4.2. The beauty of APEX
interactive reports is that they give the end user powerful ad hoc query capability with exactly zero lines of code
written by the developer. End users can customize the following:

e Searching
e Sortorder

e Columns

159

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

e Breaking

e Highlighting

e Computations

e Aggregations

e Charts

e Group by

e Flashback time

e Saved reports

e Subscription (e-mail notification)

Interactive reports are technically nothing more than a report type. The Create Report Wizard steps are similar,
and you expend the same effort in building an interactive report as for a classic report.

Classic reports can be easily converted to interactive reports. There is no way to revert from an interactive report
to a classic report. (But why would you want to?) The end-user features and overall value of interactive reports are best
illustrated with an example, so let’s add an interactive report to your application.

Creating an Interactive Report

Interactive reports require nothing more than a SQL query. APEX handles the rest. You start by creating a new page,
tab, and interactive report all at once on a view of your Help Desk data. Begin as follows:

1. Run any page in the application.

Click Create on the Developer toolbar.
Select New Page, and click Next.
Select Report, and click Next.

Select Interactive Report, and click Next.

o o oA woN

Enter 300 for Page Number and Analysis for Page Name and Region Name, and set
Region Template to Region Without Buttons and Titles.

7. Set Breadcrumb to Breadcrumb, and when the page refreshes, click Next. See Figure 7-12.

160

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

‘ Cancel |

Identify a page number and name. I the page number you specify does not exist, the wizard creates the page for you

Application: 123 - Help Desk
* Page Number 300
* Page Name | Analysis

* Region Template | Region without Buttons and Titles 3

* Region Name | Analysis

Breadcrumb | Breadcrumb :

Create Breadcrumb Entry

Entry Name | Analysis

Parent Entry | No parent breadcrumb entry

[No parent breadcrumb entry]

Select Parent Entry:

Name Page
Home 1
Contact Us 3
Create a Ticket 2
Tickets 200
Manage Multiple Tickets 230
Manage Tickets 210
Ticket Details 220

row(s)1-7of 7

Figure 7-12. Specifying the page number, name, and breadcrumbs for an interactive report
Set Tab Options to Use an existing tab set and create a new tab within the existing tab

set. When the page refreshes, set Tab Set to TS1 (Home, Tickets), enter Analysis for
New Tab Label, and click Next (see Figure 7-13).

‘ £ H Cancel

Page: 300

Tab Options: () Do not use tabs
G) Use an existing tab set and create a new tab within the existing tab set
() Use an existing tab set and reuse an existing tab within that tab set.

*TabSet [TS1(Home, Tickets) : |

* Mew Tab Label | Analysis

> Tabs

Figure 7-13. Specifying tab options for an interactive report

Next »

Next)»

161

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

For this report you're going to use the TICKETS_V view instead of the TICKETS table directly. The view joins the
TICKETS table to the STATUS_LOOKUPS table so you don’t have to do it manually later at the column level:

9. Enter SELECT * FROM tickets_vin the Enter a SQL SELECT Statement region, set
Uniquely Identify Rows by to Unique Column, enter TICKET_ID for Unique Column, and
click Next (see Figure 7-14).

£ Cancel Next)

* Enter a SQL SELECT statement

select * from tickets_v

Query Builder

Link to Single Row View Yes #
Uniguely Identify Rows by Unigue Column =+

Unigue Column | TICKET_ID

» SQL Query Example
Figure 7-14. Entering a SQL SELECT statement for an interactive report
10. Click Create.

Running an Interactive Report

Run the application, and navigate to the Analysis tab. The page looks similar to Figure 7-15. At first glance, the
interactive report looks no different than any other APEX report. However, the interactive report can perform a
number of functions that a standard APEX report can'’t.

162

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

fome et m

Analysis
Q- Go Actions ~
Ticket Id Subject Description AssignedTo CreatedOn Created By Closed On Status Number Of Details
User called and cannot log into his MS Outlook e-mail 25-NOV- 25-NOV-
41 Cannotlog into E-Mail o SCOTT 2012 PAUL 2012 OPEN 2
The user's PC will not turn on when the power button 24-NOV-
2 PCwillnotturn on is pressed. MARTIN 2012 RINGO - CLCSED 1
3 Need more memory User needs more memory installed DoUG gg;NEOV' GEORGE - OPEN 1
4 MSIE Crashed 4 times MSIE keeps on crashing for any site SCOTT 22 oV MARTIN - CLOSED 1
5 Need toinstall SP2 SP2 Upgrade needed in order to be compliant KAREN ga;NEOV' ALEX - OPEN 1
Network drive not being 3 I 20-NOV-
6 mapped X: drive notbeing mapped to \corp\share KAREN 2012 GEDDY - OPEN 1
7 BSOD after rebooting Blue Screen of Death every time system is rebooted DOUG QS;NEOV' NEAL - OPEN 1
Wireless signal not strong R I 1B-NOV- 24-NOV-
8 enough Wi-Fi signal not as strong as it was |ast week SCOTT 2012 MARTIN 2012 CLOSED 2
8 Ithink | have a virus Something is not right - PG is slow MARTIN TN ROBERT - OPEN 1
i Message stating that virus updates are needed keeps 16-NOV- -
10 Virus Definitions Dates appearing SCoTT 2012 MARTIN CLOSED 1
41 Funny smell coming from PC There is an odd odor emanating from my PC KAREN QS;NEOV' JIMMY - OPEN 1
. R - 14-NOV-
12 Accidentally deleted Q2 ppt File Q2.ppt placed in Recycle Bin; bin emptied MARTIN 2012 EDDIE - OPEN 1
Several dead pixels on 13-NOV-
13 o There are atleast 4 dead pixels on the display DOUG 2012 ALEX - PENDING 1
Smartphone will notsync with Motorola Q does not sync with Outiook contacts and 12-NOV- _
" Dutlook calendar events scort 2012 MICHAEL OPEN 1
15 Getting Out of Memory errors Same Out of Memory error occurs when Office starts MARTIN EB;NEOV' DAVID - PENDING 1
1-15(3

Figure 7-15. Interactive report for tickets analysis

The interactive report has a built-in Search Bar, which is command central for the interactive report. All of the
end-user features are accessed through the Search Bar. The Search Bar is located on the top of the interactive report,
in the standard location for a report search field. But this is so much more than just a search field! The Search Bar
includes the following:

e Finder drop-down: Represented by the magnifying glass, this feature allows the user to select
which column to filter on.

e Search field: A search field where the user can enter and find text strings.

e Report select list: A select list of all saved reports. This select list is visible only when more than
one saved report is available. We talk about saved reports in a moment.

* Rows-per-page selector: A select list of number-of-rows options. This function is turned off by
default, because it’s also available from within the Actions menu.

e Actions menu: A menu of actions enabled for this report—the “interactive” options of the
interactive report.

To use the search field, type a string or phrase into it, and click the Go button. The interactive report lists only
results that match values you entered in the search field.

To use the Finder drop-down, click the arrow at the bottom-right of the magnifying glass icon to the left of the
Search Bar. This action opens a menu of the report column names. Selecting a column name causes the search to be
on the selected column only.

To use the Report select list, select one of the Report List options to navigate to the selected report. To use the
rows-per-page selector, select the desired number of rows per page to display from the select list.

To use the Actions menu, click it to expand the menu of interactive reports actions, and then select the
desired action.

163

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Restricting Functionality by Report

As the developer, you have control over what Actions menu options are available to the end user. You can also control
which of the preceding components are included on the Search Bar. The Include Search Bar options, shown in

Figure 7-16, allow you to include the Search Bar or not and to elect which elements of the Search Bar are visible to the
user. This controls end-user functionality at the report level.

Search Bar

Include Search Bar Yes

@ Search Field

Finder Drop Down

Reports Select List
Rows Per Page Selector

™ Actions Menu

Figure 7-16. Specifying Search Bar options

The Include in Actions Menu check boxes, shown in Figure 7-17, allow you to specify which Actions menu
options are available to the user. Of these, the Save Report, Save Public Report, and Subscription options are only
available to authenticated pages. This is because APEX needs to know information about the authenticated user to be
able to save reports and send subscriptions.

Include in Actions Menu (* for authenticated pages only):

@ Select Columns @ Filter ™ Rows Per Page ™ sort ™ Control Break
@ Highlight ™ Compute ™ Agaregate # Chart & Group By

™ Flashback @ Save Report * Save Public Report * @ Reset @ Help

™ Download Subscription *

Figure 7-17. Specifying the options for the Actions menu

The remaining attributes, shown in Figure 7-18, allow you to specify authorization for saving public reports,
a button template, an image for the Finder icon, an alternate image for the Actions menu, the Search button label,
and the maximum rows per page.

Save Public Report Authorization
Button Template - Select Button Template -

Finder Image

Actions Menu Image

Search Button Label

Maximum Rows Per Page

Figure 7-18. Specifying Search Bar button, image, and maximum rows attributes

164

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Restricting Functionality by Column

Specific interactive report actions can also be restricted on a column-by-column basis. For example, you can allow
the report to be filtered, but not allow a specific column to be filtered. You can declaratively enable or disable the sort,
filter, highlight, control break, aggregate, compute, chart, and group by at the column level through the individual
column report attributes page, as part of the Column Definition region, as shown in Figure 7-19.

Column Definition A~

Column Name: SUBJECT

Column Type: STRING

Group - Select Column Group - +
Display Type Display as Text (escape special characters)
* Column Heading | Subject @ Use Same Text for Single Row View

* Single Row View Label

Number / Date Format

Graghical formatfing for percentages. whole numbers betwsen 0 and 100

Heading Alignment center * Column Alignment left
Allow Users To:

™ Hide & Sort @ Filter & Highlight & Control Break # Agaregate @ Gompute @ Chart @ Group By

Figure 7-19. Specifying individual column options

You've examined the interactive report settings you can set as a developer at the report level and at the column
level. Now let’s take a look at interactive report features from the end-user perspective. The following sections
examine using the key features of an interactive report as an end user.

Using the Column Heading Menu

The column headings of an interactive report contain functionality all their own and are perhaps the fastest way to
format a single column of a report. Figure 7-20 illustrates the interactive report column heading features. Clicking a
column heading opens a column-level menu with icon-driven options for quick sorting, removing the column from
the report, adding a break on the column, searching, and filtering on the selected column. The Search Bar in this
menu allows the end user to search for and filter directly on the values in that column. The Remove Column option
lets the user quickly remove the column from the report. To restore the column, use the Select Columns option of the
Actions Menu. The Break option adds a break on the column.

165

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Q- | Go Actions -
Ticket Id Subject Descripti
...... Jser called and cannot log into
4 ! (o) [+ A \ccount

[he user's PC will not turn on w

& sort/ 5 pressed.

V4 34 Accidentally deleted D2 ppt Jser needs more memaory inste
BEOD after rebootin

“ . i)
- Filter 4 Cannot log into E-Mai Break ISIE keeps on crashing for am

5 | Disk is Full P2 Upgrade needed in order
Funmy smell coming fr
7 6 | Getting Out of Memory Brrors {: drive not being mapped to'c

» y | think | have @ virus R llue S f Death i
ue ocreen of Death every um
) Keyboard busted emove i

> & | MSIE Crashed 4 times Column Mi-Fi signal not as strong as it
Mouse is not working
7 I T — jomething is not right - PC is sl

Figure 7-20. Using the column heading menu

If you look below the filter text field, you see a full list of distinct values that occur in the column. Clicking any of
these distinct values creates a filter on the column showing only those rows that match the selected value.

Searching by Column

The magnifying glass icon at the left end of the Search Bar is actually a list of the visible columns in the report, which is
helpful as a quick way to filter on a specific column or on all columns. The selected column is the column on
which the search text applies.

Entering a value in the search field applies a filter to either all columns (the default) or the selected column.
Once a filter is applied, an option appears in the Control Summary region, as shown in Figure 7-21. The Control
Summary region is the area between the Search Bar and your report. This region appears only when an action is
applied to the interactive report and serves as a key to what actions are currently applied. The Control Summary
region contains one line for each action applied. Interactive report actions are additive: subsequent actions are applied
in addition to the existing actions. The user can disable an action by unchecking its check box. The user can remove
the action by clicking the Delete icon for that action. Double-clicking an action in the Control Summary region opens
that action control for editing.

B

Figure 7-21. Control Summary region when open

166

CHAPTER 7 FORMS AND REPORTS—ADVANCED
The Control Summary panel can be toggled open or closed. You can minimize it by clicking the Close

(minus sign) icon.
The closed Control Summary region, shown in Figure 7-22, can be exposed by clicking the Open (plus sign) icon.

Vi -

Figure 7-22. Control Summary region when closed

The Finder drop-down menu, accessible from the magnifying glass icon to the left of the search field, displays
a list of all columns in the interactive report, as shown in Figure 7-23. Selecting one of the columns limits the search
function to that column.

Q- Go Actions +
All Columns

ot Des
Ticket Id

= Mail User called and cannot It

, F Account

Subject

in The user's PC will not tur
Description is pressed.
e ary User needs more memaor
Created On times MSIE keeps on crashing
Created By P2 5P2 Upgrade needed in
Closed On 'tbeing X: drive not being mappe
Status oting Blue Screen of Death eve
Number Of Details 1ot strong

Wi-Fi signal not as strong

Figure 7-23. Finder drop-down menu

The Actions menu, shown in Figure 7-24, exposes an array of column-selection, filtering, and action options.
Expanding the menu further under the Format option reveals additional formatting actions for sorting, break,
highlighting, computing new columns, aggregating, charting, and grouping. The expanded Format menu is shown
in Figure 7-25.

167

CHAPTER 7 = FORMS AND REPORTS—ADVANCED

Q- | | @) | Actionsv]‘
Ticket Id Sublect - Select Columns &
e User ¢
Vs 1 Cannotlog into E-Mail Accoy ? o
7 2 PCwill notturn on The u
is pre E Rows Per Page 4
Vs 3 Need more memory Userr| @ Format »
7 4 MSIE Crashed 4 times MSIE
<l Flashback
_/’ 5 Needtoinstall SP2 SP2U
Network drive not being - Save Report
7 6 mapped X: driy H
(i4) Reset
Vs 7 BSOD after rebooting Blue &
Wireless signal not strong A -
4 8 anough Wi-Fi 3 Help
Vs 9 lthink | have a virus Some ﬁu load
7 10 Virus Definitions Dates Messa,—
Figure 7-24. Actions menu
Q- | ILGOJ |'Mtionsv‘||
Ticket Id Subject] Select Columns
)) User ¢
1 Cannotlog into E-Mail)
4 i Accoy ¥ ? Filter
; Theu
e 2 PCwill natturn on i8 pre. EF Per Page
j 3 MNeed more memory User 1 EFomat
g 4 MSIE Crashed 4 times MSIE
<l Flashback
_y} 5 Meedtoinstall SP2 SP2 L
Network drive not being - E Save Report
e 6 mapped X: driy
(i4) Reset
& 7 BSOD after rebooting Blue & “
f B :\rl':;eulgfﬁs signal not strong Wi-Fi @ Help
4 9 Ithink | have a virus Some ﬁc load
V4 10 Virus Definiions Dates Messa.

Figure 7-25. Choosing a format option from the Actions menu

168

Assigned To Creat
ook e-mail SCOTT 58-1?;0
er button MARTIN %g]l‘;o
I
2% Sort @
- Control Break
E Highlight
Compute
S5 Aggregate
§ig Chart
-
E Group By
dedkeeps gogrr TENC

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Selecting Columns

The Select Columns action, shown in Figure 7-26, lets the user select which columns to display and allows the user
to reorder columns as desired. The shuttle control allows the user to easily add or remove columns using the center
arrows and to order the columns that are displayed by using the up and down arrows to the right of the region.

Q- Go Actions «

Select Columns

Do Not Display Display in Report

Ticket Id Subject
Number Of Details Description
i) Assigned To
Created On
Created By
Closed On
« |Status

&

A

Cancel Apply

Figure 7-26. Selecting columns

Note The Select Columns action of an interactive report always controls what columns are displayed. If, as
a developer, you modify the SQL query to add a column to an interactive report, that new column won’t be visible until
the new column is moved from the Do Not Display region to the Display in Report region of the shuttle.

Filtering

The Filter action allows the user to declaratively define filters based on the result of a number of operators. A user can
define multiple filters per report. Multiple filters are combined with the logical AND operator. Filters defined through
the Search Bar are combined with filters defined in the Filter action. Currently there is no provision in interactive
reports to implement a logical OR for filters.

The Filter action offers a full set of filter operations for selection, as shown in Figure 7-27.

169

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Q- Go Actions «

{ Filter

Filter Type (+)Column (_)Row

Column Operator Expression
Ticket Id i of =
=
=
< Cancel Apply
<=
is null
| is not null B
Ticket id like Description
ot like | i i =
2 1 camotl :d and cannot log into his M3 Outlook e-n
P 2 F'Cwillr- not in 5 PG will notturn on when the power butt
contains 1.
| does not contain
4 3 NeedM (aiches regular expression 05 MOre memory installed
| between I
2 4 MSIE Croencu—rwmsa men=nedD§ 0N crashina for anv site

Figure 7-27. Applying a filter to an interactive report

The Filter action supports both column filters and row filters. Column filters are applied to a single column.
The column filter options change interactively, depending on the type of the filter column and the selected operator.
For example, if you select a date column, such as Created On, and then select the Between operation, the Expression
element now contains two fields, for the From and To of the between clause. In this case, the fields each have a date
picker for ease in entering the Date From and To values. The end user can also construct a custom filter using the

declarative Filter.

Row filters allow the user to build filter conditions that are based on multiple columns in the same row. A simple
row filter for your Analysis report might be a filter for all tickets that were closed on the same day they were opened.
The Filter expression may be built declaratively using selections in the Columns and Functions/Operators regions,
shown in Figure 7-28, or entered manually. Within the Filter Expression, selected columns are represented by their

letter alias.

170

CHAPTER 7 = FORMS AND REPORTS—ADVANCED

| Q- | I|: Go | I: Actions + :|

‘\?Fmer

Filter Type (_Column () Row

Name Closed on Same Day

Filter Expression 0
E= d

Columns Functions / Operators
C.| Description

D. Assigned To
E. Created On
F. Created By

G. Closed Cn

[Cancel | [Apply |
Figure 7-28. Building a row filter

Sorting

The Sort interface allows the user to specify sorts on up to six columns in ascending or descending order and specify
whether NULLs are sorted first or last. The sort may be on displayed and non-displayed columns (see Figure 7-29).

| a | [Go | [Actions + |
Lk
2 Sort
¥
Column Direction Null Sorting
¥ - Select Column = | Ascending % | | Default ™|
Displayed
Subject | Ascending % | | Default s |
Description
| Assigned To | Ascending % | | Default * |
Created On
4 Created By | Ascending % | | Default 3 |
| Closed On - " ; "
{ G L | Ascending % | | Default : |
Oti r
':'?ckel d | Ascending % | | Default s |

Number Of Details

| Cancel | [Apply |

Figure 7-29. Adding sorts to an interactive report

171

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Adding Breaks

The Control Break action allows the user to define break formatting on up to six columns. The user specifies the break
column and whether the break is disabled or enabled. APEX automatically applies the declared break formats to the
report. Note that break columns appear in the Control Summary as separate entries, letting the user enable, disable,
or remove break columns individually. Figure 7-30 shows the Analysis report with breaks applied on the Assigned

To and Status columns.

Q- Go Actions

“E Assigned To W ¢
B E staws o %

Assigned To : DOUG, Status : OPEN

Ticket Id Subject Description Created On Created By ClosedOn Number Of Details
Vg 3 Need more memory User needs more memaory installed 23-NOV-2012 GEORGE - 1
I 7 BSCD after rebooting Blue Screen of Death every time system is rebooted 19-NOV-2012 NEAL - 1
Vg 16 VPN ClientInstall Issues Cannaotinstall VPN client - installer errors out each time 10-NOV-2012 JACKIE = 1
i 20 Diskis Full No more space error keep coming up 06-NOV-2012 MARLON - 1
Assigned To : DOUG, Status : PENDING

Ticket Id Subject Description Created On Created By ClosedOn Number Of Details
7 13 Several dead pixels on screen There are atleast 4 dead pixels on the display 13-NOV-2012 ALEX - 1

Assigned To : KAREN, Status : OPEN

Ticket id Subject Description Created On Created By ClosedOn Number Of Details
rd 5 Needtoinstall SP2 SP2 Upgrade needed in order to be compliant 21-NCOV-2012 ALEX - 1
Vg 6 Network drive not being mapped X: drive not being mapped to ‘corp\share 20-NOV-2012 GEDDY - 1
i 1 Funny smell coming from PC There is an odd odor emanating from my PC... 15-NOV-2012 JIMMY - 1
Vg 17 Mouse is not working Mouse does not move the pointer anymore 09-NOV-2012 TITO - 1
Assigned To : MARTIN, Status : CLOSED

Ticket Id Subject Description Created On Created By ClosedOn Number Of Details
g 2 PC will notturn on The user's PC will not turn on when the power button is pressed 24-NOV-2012 RINGO - 1

Assigned To : MARTIN, Status : OPEN

Tinlns 1ol Cutbalans Pnsarintian Frenntnd On Fenmtad Du Clacad An Misbae (6 Radaile

Figure 7-30. Interactive report with control breaks applied

Highlighting

The Highlight action allows the user to find matching data and highlight it by row or column, specifying the
background and text colors for the highlight. The Highlight action interface is shown in Figure 7-31.

172

Highlight
Name
Sequence
Enabled
Highlight Type

Background Color

Text Color | #000000

Highlight Condition

Column

Assigned To

Assigned to Scott
10
Yes =

Row =

CHAPTER 7

#E9ED7C D D

yellow] [green] [blue] [orange] [red
D. vellow] [green] [blue] [orange] [red

Operator Expression

| |scotT

Cancel Apply

Figure 7-31. Adding highlighting with the Highlight action

FORMS AND REPORTS—ADVANCED

The same operators that you saw in the Filter action apply here. The background and text colors may be specified
using hex notation or the color palettes. The Highlight action appears in the Control Summary region as a highlighted row.

Computing Columns

The Compute action allows the user to define a new column as a computation based on existing columns and
functions using the Compute action interface, shown in Figure 7-32.

Compute

Computation | - New Computation - *

Column Heading |Days to Close

Computation Expression 0

Format Mask 999G899G5%5G999C999C

G-

Columns
A, TicketId
B. Subject
C. Description
D. Assigned To
E. Created On

F. Created By

Create & computation using column aliases.

Examples:
1. (B+Cj*100
2. INITCAP(B)|I', "[INITCAP(C}

Keypad Function
1Y ([ABS
7|8| 8| - ADD_MONTHS
4 6 6 + CASE
1,23 * CEIL
0 o |l O CHR
space] COALESCE

3. CASEWHENA =10 THEN B + CELSEB END

Cancel Apply

Figure 7-32. Computing a new interactive report column using the Compute action

173

CHAPTER 7 = FORMS AND REPORTS—ADVANCED

The user may declaratively or manually define the computed value. The declarative interface is much the same as
the row filter interface. Columns are specified in the computation as their letter aliases. This option is quite powerful,
because it allows the end user to build essentially any column they desire.

Adding Aggregates
The Aggregate action performs one of the following aggregation functions on a column:
e Sum
e Average
e Count
e Count Distinct
e Minimum
e Maximum
e Median

The selected column must be of data type NUMBER. The results are displayed at the end of the report. Note that
aggregate results are displayed only if the corresponding column is also displayed.

Adding Charts to Interactive Reports

The Chart action allows the user to display a dynamic Flash chart representation of the data in the report, as shown in
Figure 7-33. The chart representation of the data is displayed instead of the tabular data representation. The display
can be toggled by clicking the View Chart icon, as indicated in Figure 7-33. Use the Edit Chart link to reenter the Chart
action interface.

Q- | |[GO]‘§\'J1|1|]]]\'Mﬁ0r‘ISv“
View

Edit Chart

Figure 7-33. Interactive report pie chart

174

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

The following chart types are supported in an interactive report:
e Horizontal bar
e Vertical bar
e Pie
e Line

The simple Chart action interface, shown in Figure 7-34, allows the user to select the chart type and assign a label
column, a value column, a function, and a column to sort by.

Q- Go =] Tonll Actions -
il Chart
- oY
ChartType (= gl @ @ e
Label | Assigned To =

Value | Ticket Id

Function | Count

Sort | Value - Descending + *

Cancel Delete Apply

Figure 7-34. Adding a chart using the Chart action

The user doesn’t have the full functionality of APEX charts within the Chart action, but the ease of displaying
these most common chart types is quite valuable.

Grouping

The Group By action allows the user to define groups and aggregate functions on those groups, thus letting the user
declaratively define their own summary views of the report data. A sample result of using the Group By action is
shown in Figure 7-35.

175

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Actions -

£
&
i
E
&l

Edit Group By

Assigned To Count % of Total

- 1 4.76
SCOTT 6 28.57
MARTIM 5 23.81
KAREN 4 19.05
DouUG 5 2381

1-5
Figure 7-35. Grouping using the Group By action

Like the Chart view, the Group By view of the data has a display icon in the center of the Search Bar, as indicated
in Figure 7-35. The user may display the data view, the Group By view, or, if defined, the Chart view of the data by
clicking the appropriate display icon.

Using Flashback

The Flashback action enables the user to flash back the database by the specified number of minutes to see what the
data looked like at that point in time. The option is built on the Oracle database FLASHBACK feature. Database FLASHBACK
must be enabled. The Flashback action asks for the number of minutes to flash back, as shown in Figure 7-36.

Q- Go Actions -

Iulll

{1_} Flashback
A flashback query allows you to view the data as it existed at a previous point in time.
Asof | 15| minutes ago.

Cancel Apply

Figure 7-36. Using the Flashback action

The length of flashback time is configurable. The maximum flashback period is based on the UNDO_RETENTION
parameter in the database, which is set to three hours by default.

Saving an Interactive Report

The Save Report action allows the user to save the current configuration of the interactive report as a named
report. If the end user is also an APEX developer, the user sees the Save As Default Report Settings option shown
in Figure 7-37.

176

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

E Save Report

Sa\r (Only displayed for developers)
As Default Repd¥t Settings

Name (

Description

| Cancel || Apply |

Figure 7-37. Saving an interactive report using the Save Report action

As a developer, you want to try to pre-create the versions of the report that you feel will be the most widely used
by the largest subsection of users. You may save the current report configuration as primary or alternative default
report settings, as shown in Figure 7-38. The primary report is the one that any brand-new user sees by default when
logging on to the system. If alternative default reports exist, the user is able to choose them from the select list.

The current report settings will be used as the default for all users.

Default Report Type () Primary (=) Alternative

Mame Tickets by Assignee |

| Cancel || Apply |

Figure 7-38. Setting an alternate saved report

Obviously you can'’t pre-create every possible iteration of a report. Therefore, the user may save reports as private
reports. When a report is saved, it’s added to the Reports menu in the Search Bar, as shown in Figure 7-39.

Analysis
Default —_—
Q- | e NN 1. Primary Report | Actions = |
2. Tickets by Assignee -
Private

1. Tickets by Status

Status : CLOSED

Ticket Id Subject Description

| » 2 prowill natiirm an The users PC will not turn on when the power button is

Figure 7-39. Using the default Reports menu

177

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Resetting an Interactive Report

The Reset action, shown in Figure 7-40, restores the current report to the default settings. Any changes in formation
or result set (by filtering) are lost, unless of course the report is a saved report. It may then be reinstated simply by
selecting the report name from the select list.

\lg Reset

Restore report to the default settings.

Cancel Apply

Figure 7-40. Resetting an interactive report to its default settings

Getting Help

The Help action opens a window that contains interactive report-specific help, as shown in Figure 7-41. All of the
interactive report options are displayed in this Help window, regardless of whether they're enabled for the current report.

800 Help "
] 192.168.175.132/apex/wwv_flow_utilities.show_ir_help?p_app_id=123&p_worksheet_id=9417303703392873&p_lang...

Interactive Report Help

Interactive report regions enable end users to customize reports. Users can alter the layout of report data by selecting columns,
applying filters, highlighting, and sorting. Users can also define breaks, aggregations, charts, group bys, and add their own
computations. Users can also set up a subscription so that an HTML version of the report will be emailed to them at a designated
interval. Users can create multiple variations of a report and save themn as named reports, for either public or private viewing.

An interactive report can be customized using the Search bar, Actions menu, or Column Heading menu. To learn more, see
"Customizing Interactive Reports" in online Help.

Search Bar

At the top of each report page is a search region. This region (or Search bar) provides the following features:

Select columns icon enables you to identify which column to search (or all).

Text area enables you to enter case insensitive search criteria (wild card characters are implied).
Go button executes the search.

Reports displays alternate default and saved private or public reports.

Actions Menu enables you to customize a report. See the sections that follow.

Actions Menu
The Actions menu appears to the right of the Go button on the Search bar. Use this menu to customize an interactive report.
Select Columns

Used to modify the columns displayed. The columns on the right display. The columns on the left are hidden. You can reorder the
displayed columns using the arrows on the far right. Computed columns are prefixed with **.

Filter

Focuses the report by adding or medifying the WHERE clause on the query. You can filter on a column or by row.

If you filter by column, select a column (it does not need to be one that displays), select a standard Oracle operator (=, !=, not in,
between), and enter an expression to compare against. Expressions are case sensitive. Use % as a wild card (for example,
STATE_NRME like A%).

If you filter by row, you can create complex WHERE clauses using column aliases and any Oracle functions or operators (for

Figure 7-41. The interactive report help page

178

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Adding a Subscription

The Subscription action allows the user to e-mail a report to designated e-mail addresses on a scheduled basis.
The user enters the e-mail address, subject, frequency, and start and end date, as shown in Figure 7-42. This action
is available for authenticated users only. The e-mail received is a searchable HTML version of your report. Break
formatting and highlighting aren’t preserved.

: £ Add Subscription

Email Address | info@example.com
Subject |Primary Report

Frequency | Daily

Starting From |20-DEC-2012 08 :| [AM :|-0500 Ending [- NoEnd Date - *| | Day

Cancel Apply

Figure 7-42. Subscribing to an interactive report

If a subscription for the current user is in effect, you can edit that subscription by using the Subscription action
again. The form then presents the current subscription attributes and allows the user to either change or delete the
subscription. The interface is exactly like that shown in Figure 7-42, the only addition being a Delete button.

Report subscriptions can also be managed by a Workspace Administrator through the Manage
Service » Interactive Report Settings » Subscriptions interface, shown in Figure 7-43.

Cancel Reset Delete Checked Delete All

Q- Go Actions v

Application(=] Page Region Subscribed By Frequency Email To Created Created By Status

122 300 Analysis | ADMIN Daily info@example.com 26 secondsago | ADMIN Submitted

1-1

Figure 7-43. Managing subscriptions through the manage-subscriptions interface

Downloading
The Download action allows the user to download the current result set of their report in one of the following formats:
e CSV
e HTML
e E-mail
e XLS (MS Excel)
e PDF
e RTF(MS Word)

179

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

The latter three formats require Oracle BI Publisher, which may require a separate license from Oracle.

Figure 7-44 shows the download options without and with BI Publisher. You can specify which formats are available
in the Download attributes region, as shown in Figure 7-45.

iﬂuwnlmd

Choose report download format:

i Cancel

#Dﬂ'ﬂﬂm

Choose report download format:
= = e
y =

- >
Csv xS PDF RTF

Cancel |

Figure 7-44. Choosing download options, without and with BI Publisher

Download

Download Formats (* for authenticated pages only):
™ csv @ HTML & Email* @ PDF

CSV Separator . CSV Enclosed By

Filename | tickets.csv

Figure 7-45. Specifying download attributes

Reports downloaded in CSV format are plain comma-delimited data. The content and order of data in the result
set are retained in the CSV file, but break formatting and highlighting aren’t.

Reports downloaded in HTML format are a searchable HTML version of the result set, as shown in Figure 7-46.
Again, the result set content is preserved, but the break formatting and highlighting aren’t.

180

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Search: Search
Status Ticket Id Subject Description Assigned To Created On Created By Closed On Number Of Details
OPEN 1 Cannot log into E-Mail User called and cannot log into his MS Outlook e-mail Account SCOTT BV eauL 2o ov- 2
. The user's PC will not tum on when the power button is 24-NOV- .
CLOSED 2 PCwill nat turn on pr] MARTIN 2012 RINGO 1
23-NoV-
OPEN 3 Need more memory User needs more memory installed DOUG 2012 GEORGE = 1
CLOSED 4 MSIE Crashed 4 times MSIE keeps on crashing for any site scoTT 531’“20" MARTIN - 1
OPEN 5 Need to install P2 SP2 Upgrade needed in order to be compliant KAREN ;él"‘zw ALEX - 1
) 20-NOV-
OPEN 6 Network drive not being mapped X: drive not being mapped to \corp\share KAREN 2012 GEDDY - 1
OPEN 7 BSOD after rebooting Blue Screen of Death every time system is rebooted DOUG o e . 1
rINSFN R Wiralecs cinnal nnt ctrann anaiah Wi-Fi cinnal nt ag dhrmnn ac it was lach wask senTT 18-Nov- MARTIN 24-NOv- 2

Figure 7-46. The searchable HTML download of an interactive report

The e-mail download is the same output as the HTML download, but delivered in an e-mail. The XLS, PDE,
and RTF download formats require integration with Oracle BI Publisher, which may require a separate license from
Oracle. A complete description of the use of Oracle BI Publisher to produce reports in these formats is beyond the
scope of this book. See the Oracle APEX documentation section “Advanced Printing Options and Configuration” for
more details. If these options aren’t configured for your installation, they don’t appear in the download options list.

Take some time to experiment with the features of the interactive report. If you get lost and need to start over,
simply click the Actions button and select Reset. The interactive report will be reset to its original state, and all
modifications that you made to it will be discarded.

Modifying an Interactive Report

Although an interactive report offers a tremendous amount of functionality, you may wish to limit which features
are available to your end users. Each feature of the interactive report can be disabled on a report-by-report basis. In
addition, you can set up default options for a specific report, making those available to all end users.

Adding Attributes and Removing Columns

Let’s take another look at your interactive report. You use a combination of interactive report end-user actions and
developer settings to achieve modifications. First, remove a column from the report and add a sort attribute using the
Actions menu:

1. Run the application, and navigate to the Analysis tab.
2. Click the Actions button to display the Actions menu.

3. Select the Select Columns option, as shown in Figure 7-47.

181

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Q- Go Actions -

Ticket Id Sublect Select Colun@
7 1 Cannotlog into E-Mail gg&;[ﬁ FJ? Eiter o
& 2 PCwillnotturn an ;I;h;rgs: Rows Per Page 3 1
7 3 MNeed more memory Userr Format »
& 4 MSIE Crashed 4 times MSIE

<Jilll Flashback

Figure 7-47. Selecting the Select Columns option

4. Move Ticket Id to the Do Not Display section of the shuttle, as shown in Figure 7-48, by
double-clicking its name.

Select Columns

Do Not Display Display in Report

Ticket Id Subject

Status

igh) | Description
Assigned To
Created On
Created By

4 |Closed On

K Number Of Details

I <23é;',> e

Cancel Apply

Figure 7-48. Selecting columns

5. Using the up and down arrows, reorder the remaining columns so that Status appears
after Subject and before Description, as shown in the Display in Report section in
Figure 7-48, and click Apply.

Notice that the Ticket ID column is no longer displayed in your report and that the Status column appears
immediately after the Subject column.

Next, you can set your changes as default options for the interactive report. These options will be applied for all
end users who use the interactive report. The Save As Default Report Settings option is only available to end users who
are APEX developers:

6. Click the Actions button, and select the Save Report item.

7. SetSave to As Default Report Settings, as shown in Figure 7-49.

182

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

—ll:EIi Save Report

Saw¢ v As Named Report (Only displayed for developers)
Name-| Yssr| () Public
Description
| Cancel || Apply |

Figure 7-49. The Save As Default Report setting

8. The region immediately changes, allowing you to save the report as the primary default or as
anamed alternative. Make this one the primary default, as shown in Figure 7-50. Click Apply.

The current report settings will be used as the default for all users.

Default Report Type (=)Primary () Alternative

| Cancel || Apply |

Figure 7-50. Saving a primary interactive report

Now create a named alternative default report that does a control break on the Status column:

9. Click the Actions button, and navigate to Format » Control Break, as shown in Figure 7-51.

| Go | | Actions v |

Select Columns Assigned To Create

User g ook e-mail 25-NO
Accod T 7 Filter EEC 2012
The uy rer button MARTIN 24-NO
15 preg Rows Per Page 4 2012
g
U
sert Format P14 son
3 o
MSIE B - c | Break
<Ml Flashback ontrol Breal & .
sP2U . o
— Highlight
o Save Report = o
X driv Ei = Compute
. (9 Reset o
Blue ¥ Aggregate
e]
Wi-Fi ¢ d Help il Chart
Some @ Download { Group By e
Messe _ ded keeps TE-NO
appes & Subscription scorr 2012
L+ Thers is an odd odar emanating fram mv PC KARFEN :I‘§—_I‘§I‘D'

Figure 7-51. Selecting the Control Break action

183

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

10. Select Status in the first Column select list and make sure it’s set to Enabled, as shown in
Figure 7-52. Click Apply.

Control Break

Column Status

1 | Status + | | Enabled
2 | - select Column - : Enabled 3
3 | - Select Column - + | | Enabled +
4 | - Select Column - - Enabled =
5 | - Select Column - = Enabled
6 | - Select Column - +| | Enabled =+

Cancel Apply

Figure 7-52. Applying a control break to an interactive report

11. Click the Actions button, and select the Save Report option.

12. Set Save to As Default Report Settings, as shown in Figure 7-53.

H Save Report

Saw¢ v As Named Report (Only displayed for developers)
As Default Report § ;*1 ngs
MName ke | [Public
Description
Cancel Apply

Figure 7-53. Saving an interactive report as a default setting

13. The region immediately changes. This time, save the report as a named alternative: select
Alternative for Default Report Type, enter Tickets by Status for Name, as shown in
Figure 7-54, and click Apply.

184

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

The current report settings will be used as the default for all users.

Default Report Type () Primary (=) Alternative

Name | Tickets by Status|

Cancel Apply

Figure 7-54. Saving on interactive report as an alternate report

The toolbar at the top of the report now has a new Reports select list that contains both your default and
alternative reports, as shown in Figure 7-55.

Analysis)
Default

= | 1. Primary Report | =

=5 | Go | Report RIS [Actions + |

.8

Figure 7-55. Reports select list showing the primary and named alternative reports

Selectively Enabling and Disabling Items

As a developer, you can selectively enable or disable items from the Actions menu. Doing so restricts what options are
available to the end user for a specific interactive report. Here’s an example to work through:

1. Edit Page 300 of the application.

2. Edit the Analysis report’s interactive report properties by right-clicking its name and
selecting Edit Report Attributes.

3. Scroll down to the Search Bar region. Uncheck Flashback and Save Report in the
Include in Actions Menu list, select Subscription and Save Public Report, and then
scroll to the top of the page and click Apply Changes (see Figure 7-56).

Include in Actions Menu (* for authenticated pages only):

Select Columns @ Filter ™ Rows Per Page ™ sort Control Break

Highlight ™ Compute ™ Aggregate ™ Chart @ Group By
Flashback Save Report * (# Save Public Report * (o Reset @ Help

Download ™ Subscription *

Figure 7-56. Selecting Actions menu options

Run your report again, and click the Actions button to expand the actions menu. Notice that the Flashback item is
no longer present and that Save Report has an asterisk next to it. The asterisk denotes that only a user who is logged in
as an APEX developer can save any type of reports. End users don’t see this option. You should also see a new option
for subscriptions.

185

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Limiting an Action to Specific Columns

In addition to controlling which actions appear for an interactive report, you can get even more granular and
determine which columns a specific action can be performed on. Figure 7-57 shows the column-level Actions settings
for your interactive report. Proceed as follows:

Allow Users Tao:
™ Hide () Sort (] Filter @ Highlight @ Control Break & Aggregate # Compute # Chart & Group By

Figure 7-57. Selecting column-level actions for an interactive report

1. Edit Page 300 of your application.

2. Edit the Analysis report’s interactive report properties by right-clicking its name and
selecting Edit Report Attributes.

3. Edit the Description column.

4. Inthe Column Definition region, uncheck the Sort and Filter check boxes in the
Allow User To item, and click Apply Changes.

5. Run Page 300 of your application.

6. Click the Actions button, and select Format » Sort. The Sort action interface should look
similar to Figure 7-58.

1
1 Sort
¥
Column Direction Null Sorting
- Select Column o Ascending 4 | | Default .
Displayed
: Ticket Id | Ascending + | | Default =
Subject
Assigned To | Ascending % Default
Created On
| Created By | Ascending + Default
| Closed On - "
| L | Ascending = Default
Number Of Detail
L i i || Ascending % Default

Cancel Apply

Figure 7-58. Modified Select Column list

7. Notice that Description no longer appears as a column name in the list of columns.

186

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

By default, the interactive report links to something called Single Row View. This view shows a read-only region
that contains all the details about a specific row. In this case, you may want to link back to the form you created on
page 210. Thus you can alter the interactive report to use a more traditional page link instead of the Single Row View.
You do this by editing the Link Column attributes, as shown in Figure 7-59:

Link Column S

Link Column Link to Custom Target

Single Row View Allow Exclude Null Values
Allow Displayed Columns

Uniguely Identify Rows by

Unigue Column

* Link lcon <img src="#IMAGE_PREFIX#menu/pencil16x16.gif" alt: @

[lcon1] [lcon2] [lcon3] [lcon4] [lcon5] [lcon6] [lcon7] [lcon 8]

Link Attributes

Target Page in this Application % Page | 210 ~ Reset Pagination
Request Clear Gache ~

Name Value

Item 1 | P210_TICKET_ID & |#T\CKEF_ID#| |@

ltem 2 { &

ltem 3 @ <?
Page Checksum - Use default -

Condition Type
- No Cendition -

[PL/SQL] [item / column=value] [itemn / column not null] [item / column null] [request=e1] [page in] [page notin] [exists] [never] [none]

Authorization Scheme - No Authorization Reguired - *

Figure 7-59. Setting the Link Column attributes

8. Edit Page 300 of the application.

9. Edit the Analysis report’s interactive report properties by right-clicking its name and
selecting Edit Report Attributes.

10. Inthe Link Column region, set Link Column to Link to Custom Target.

11. Make sure Target is set to Page in This Application, set Page to 210, enter P210_TICKET ID
for the Name of Item 1 and #TICKET_ID# for the Value of Item 1, and then click Apply
Changes (see Figure 7-59).

Name and Value tell the link to pass the current ticket’s ID (identified by #TICKET ID#) and assign it to
P210_TICKET_ID in session state.

Run page 300 of your application. You should now be able to drill into the details of any row by clicking in the
column with the Edit link.

Looking Behind the Scenes

Let’s look behind the scenes of the interactive report. You may be surprised to see that there is only a single interactive
report region in the Page Rendering region, as shown in Figure 7-60.

187

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Page Rendering =+ Page Processing % Shared Gomponents %

E [J Analysis After Submit
ader

B

+ Dynamic Actions

Figure 7-60. The Application Builder view of the interactive report

The Page Processing column contains no elements, and the Shared Components region contains only the
expected elements for the parent tabs: the breadcrumbs and templates.

This is the first case where you can’t easily re-create the interactive report using standard declarative APEX
elements. The additional functionality is from a collection of JavaScript functions, CSS, and HTML that are all
contained within the interactive report region type. Although you could build this from scratch, the APEX interactive
report is a huge timesaver.

Calendars

Sometimes there are trends in data that aren’t obvious when viewed in the traditional row/column format. By simply
displaying data a different way, such as in a calendar report, trends can become obvious. The APEX calendar report
can display data in a daily, weekly, or monthly view and doesn’t require that you enter any SQL.

Understanding Calendar Types

An APEX calendar is a type of APEX report. Data is rendered on a calendar instead of in a traditional row/column
format. The calendar format allows you to view your data in a new way. The single requirement for an APEX calendar
is that the underlying table or view must have at least one DATE column.

There are two types of APEX calendars:

e Easy/Declarative: Created entirely by using the APEX Easy Calendar Wizard.

e SQL calendar: Created by entering a custom SQL query. The SQL query must contain
a DATE column.

Data in a calendar can act as a column link, the same as any other report column. This makes it simple to build
a calendar that lets the user click a date and drill to another page or URL.

Creating a Calendar

To implement an APEX calendar, you can create a new page and a calendar region using the Easy Calendar Wizard.
Here are the steps to follow:

1. Run the application.

2. Click Create in the Developer toolbar.

188

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Select New Page, and click Next.
Select Calendar, and click Next.

Select Easy Calendar, and click Next.

o o » w

As shown in Figure 7-61, enter 400 for Page Number and Ticket Activity Calendar for
both Page Name and Region Name, and set Breadcrumb to Breadcrumb.

£ || cancel Next »

* Page Number 400
* Page Name | Ticket Activity Calendar
* Region Template | Reports Region
* Region Mame | Ticket Activity Calendar
Display Type Partial Page Refresh

Breadcrumb Breadcrumb

Figure 7-61. Creating a ticket activity calendar

7. When the page reloads, enter Calendar for Entry Name, and click Next (see Figure 7-62).

Create Breadcrumb Entry

Entry Name | Calendar|

Parent Entry | No parent breadcrumb entry

[No parent breadcrumb entry]

Figure 7-62. Specifying the breadcrumb entry for the calendar

8. SetTab Options to Use an existing tab set and create a new tab within the existing
tab set. When the page refreshes, set Tab Set to TS1 (Home, Tickets Analysis), enter
Calendar for Tab Label, and click Next (Figure 7-63).

€ || cancel Next)»
Page: 400
Tab Options: () Do not use tabs

(&) Use an existing tab set and create a new tab within the existing tab set
(0) Use an existing tab set and reuse an existing tab within that tab set.

*TabSet | TS1(Home, Tickets, Analysis) +

* Tab Label | Calendar]| ‘

Figure 7-63. Specifying tabs for a calendar

9. Select your schema as the Owner, as shown in Figure 7-64. When the page reloads, select
TICKETS (table) for Table/View Name, and click Next.

189

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

€ || cancel Next)

*Owner | APRESS

* Table /View Name [TICKETS(table)

(containing Date or Timestamp column)

Figure 7-64. Specifying the table owner and table name for a calendar

The next step in the wizard allows you to choose the date and table that are used to display the events on the
calendar. Also on this page you can choose how you want to see the date displayed (Date only or Date and Time).

The Primary Key Column selection is used to link the calendar events to an edit screen. In most cases, you want
to choose the primary key column of the underlying table.

The Custom Date Range option builds into the generated calendar the ability for the end user to specify the date
range to be shown in the calendar.

Finally, Enable Drag and Drop lets the user click and drag events from one date/time to another without actually
having to edit the item via the associated edit screen.

Note Not all themes supplied by APEX support the ability to use drag and drop within calendars. Because of this, the
example has drag and drop turned off. Make sure you’re using a theme that supports it before you enable drag and drop
in the Easy Calendar Wizard.

10. For Date Column, select CREATED_ON. For Display Column, select SUBJECT.

11. Set Date Format to Date Only.
12. Select TICKET_ID as the Primary Key Column.
13. Set Custom Date Range and Enable Drag and Drop to No, as shown in Figure 7-65.

€ || cancel Next >

Specify the data manipulation language (DML) operations and various display attributes to be applied to the calendar.
Table/View Name: TICKETS
* Date Golumn | CREATED_ON $

* Display Golumn SUBJECT
Date Format: (®) Date Only _) Date and Time

* Primary Key Golumn | TICKET_ID
Custom Date Range No *

Enable Drag and Drop | No 4

Figure 7-65. Setting the column selection for a calendar

14. Click Next.

190

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

The last wizard step allows you to identify whether you wish to link the calendar to an edit page and, if so, what
type of edit environment you wish to use. You can choose for the wizard to create a simplified edit form for you, point
to an existing page, point to an external URL, or omit the Edit link all together.

In this example, link to the existing edit screen on page 210:

15. Set Link Target to Page in This application, set Page to 210, set Date Item on Target
Page to P210_CREATED_ON, and set Primary Key Item on Target Page to P210_TICKET ID,
as shown in Figure 7-66.

< Cancel Next »

Specify the link details for the calendar entry
Page: 400

Link Target Page in this application *

*Page 210 =
* Date ltem on Target Page | P210_CREATED_ON ﬁ?
* Primary Key Item on Target Page | PZL0_TICKET_ID @
Open Link in Same Window

Figure 7-66. Linking the calendar to an edit page

16. Click Next.
17. Click Create.

Upon running the calendar report, you may notice that it’s hard to tell entries from one another and that there’s
no delimiter in between them. One of the options of the calendar report is to supplement the display value with either
text or HTML. Add a bullet at the beginning of each entry so it’s easy to distinguish multiple entries that fall on the
same day:

1. Edit Page 400 of the application.

2. Edit the Calendar Attributes by right-clicking the Calendar Region Name and selecting
Edit Calendar.

3. Inthe Calendar Display section, shown in Figure 7-67, set Calendar Template to
Calendar, Alternative 1, set Display Type to Custom, and then enter the following for
Column Format:

<1i>#SUBJECT#</1i>

191

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Calendar Display

Calendar Template
Easy SOL Table Owner
Easy SQL Table

Date Golumn

Date Format:

Date Item

Calendar, Alternative 1 =
APRESS
TICKETS

CREATED_ON 3
(®)Date Only () Date and Time

P400_CALENDAR_DATE

End Dateltem | P400_CALENDAR_END_DATE ~

Calendar Type Column | P400_CALENDAR_TYPE ~
Display Type Custom =
Display Column
Primary Key Column | TICKET_ID :

Column Format [Insert column value]

leul><li#SUBIECT#</linc/ul>

Figure 7-67. Setting calendar display template and item attributes

4. Inthe Display Attributes section (see Figure 7-68), change Time Format to 12 Hour, and
set Start Time to 7 am and End Time to 7 pm. Click Apply Changes.

Display Attributes -~

Begin at Start of Interval

Start of Week for Monthly Calendar Sunday
Start Day for Weekly Calendar Sunday
End Day for Weekly Calendar | Saturday
Time Format 12 Hour
Start Time |7 am
End Time |7 [pm +]|
Data Background Color D I:‘
Data Text Golor B

List View Days Display Current Month *

Figure 7-68. Setting calendar display date attributes

The wizard creates the buttons that allow you to view the calendar in daily and weekly modes, but they’re
disabled by default. You can tell this because those buttons are in italics in the Page Processing section, indicating that
they have a condition applied to them. Enable them so you have more options on the calendar:

5. On Page 400 of your application, edit the WEEKLY button by double-clicking its name in
the tree.

6. Inthe Conditions section, set Condition Type to - Button NOT Conditional -.
See Figure 7-69.

192

Conditions

Condition Type
- Button NOT Conditional -

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

[PL/SQL] [tem / column=value] [item / column not null] [tem / column null] [request=e1] [page in] [page notin] [exists] [never] [none]

Figure 7-69. Setting the WEEKLY button condition

7.
in the list.
8.
Conditional -.
9. Click Apply Changes.

For the DAILY button, in the Conditions section, set Condition Type to - Button NOT

At the top of the page, click the > button to save your changes and move to the next button

If you navigate to the Ticket Activity Calendar report’s Calendar Attributes tab, notice the Day Link region just
below the Column Link region. These Day Link attributes are for setting a link on the calendar day to an APEX page or
a URL, in the same manner that you just set a link on the SUBJECT column.

Run the page, and notice that each entry in a day is much more distinguishable. Your calendar should look
similar to Figure 7-70. You can now click these entries and see the details.

Ticket Activity Calendar

November 2012
Sunday Monday Tuesday
04 05 08
+ Disk is Full
1" 12 13

+ Getting Out of Memory « Smartphone will not sync

with Outlook

+ Saveral dead pixels on
errors

screen

18 19 20

+ Wireless signal not strong « BSOD after rebooting » Network drive not being
encugh mapped

25 26 27

+ Cannot log into E-Mail

Figure 7-70. The ticket activity calendar

‘Wednesday

o7

+ Keyboard busted

14

+ Accidentally deleted
Q2.ppt

21

+ Need to Install 5P2

28

Menthly

Weekly Daily

Thursday
01

08

« Speakers are too soft

18

« Funny smell coming from

22

PC

+ MSIE Crashed 4 times

29

List < Previous

Friday
02

09

« Mouse s not working

16

» Virus Definitions Dates

23

+ Need more memory

30

Today Next >

Saturday
03

10

+ VPN Client Install lssues

17

+ | think | have a virus

24

+ PC will not turn on

193

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Looking Behind the Scenes

Now that your calendar works, let’s look at what the Easy Calendar Wizard built for you. Edit page 400. In the Page
Rendering region, shown in Figure 7-71, you have three items and seven buttons:

Page Rendering &=

Bl [Ticket Activity Calendar
{ Before Header
H After Header
H Before Regions
= Regions
E Body (3)

B [E] Ticket Activity Calendar
El Items
-3 P400_CALENDAR_TYPE
-3 P400_CALENDAR_DATE
-3 P400_CALENDAR_END_DATE
= Region Buttons

MONTHLY

B
B
B

@
& WEEKLY
- (@ DAILY
- (@ LISTVIEW
@
@
@

PREVIOUS
TODAY
NEXT

el
T+

After Regions
Before Footer
After Footer

- Dynamic Actions

el
T+

el
T+

Figure 7-71. Page Rendering region for your calendar

The three items are

e P400_CALENDAR_TYPE

e P400_CALENDAR_DATE

e P400_CALENDAR_END_DATE
The seven buttons are

e MONTHLY

e WEEKLY

e DAILY

e LISTVIEW
e PREVIOUS
e TODAY

e NEXT

However, notice that there are no processes in the Page Processing section of the page. That is due to the fact that
the buttons use JavaScript calls to set values on the page and navigate between the calendar views.

For instance, if you look at the Action When Button Clicked section of the WEEKLY button, you see code similar
to that shown in Figure 7-72.

194

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Action When Button Clicked ~

Action | Redirect to URL

Execute Validations | Yes # |

* URL Target

javascript:apex.widget.calendar.ajox_calendar('W', "'same')}; void(@);
Database Action | - No Database Action -+

Figure 7-72. The JavaScript action performed by the WEEKLY button

The apex.widget.calendar.ajax_calendar JavaScript is a utility built in to APEX that performs actions
specifically related to calendars. Although it isn’t documented in the API reference, just by looking at the calls you can
gain some insight into what the API does.

Charts

In APEX 4.2, charts got a major facelift with the incorporation of AnyChart 6. Not only does this release of AnyChart
produce charts that look much more professional than in previous releases, but the charting engine also provides the
option to use either Flash-based or HTML5-based charts. This is a huge leap forward for applications aimed at the
mobile market, because HTML5 charts render on most modern browsers with no need for extra plug-ins.

The beauty of the new charting engine is that you can flip between rendering Flash and HTML5 charts at any
time during the development of the page, and the declarative data remains the same, regardless of the choice
of rendering.

HTMLS5 charts also maintain the same level of interactivity that Flash charts have, including hover and
click-and-drill functionality.

Figure 7-73 shows both the Flash version and the HTMLS5 version of a bar chart, showing that, although the look
changes a certain amount, the same code generates very similar charts.

Flash Chart HTML Chart

Flash Chart HTML Chart

14 14

4 4

. 1 I e I

OPEN CLOSED PENDING OPEN CLOSED PENDING

Figure 7-73. The same chart rendered with Flash and HTML5

Flash and HTMLS5 charts have almost identical functionality, but HTMLS5 charts are only able to render the 2D
versions of the chart types. This is a small price to pay for the ability to render on any modern browser without having
to continually update your Flash drivers.

195

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Writing Queries for Charts
APEX charts generally need a query of this type

SELECT

link,

label,

value
FROM

table
WHERE

where conditions
GROUP BY

group by column list
ORDER BY

Order by column list

where
e linkisalink to an APEX page or other URL.
e labelisthelabel for the chart element.
e valueis the value to be charted.

The exact syntax changes slightly to suit the needs of the various chart types, but the general link-label-value
format remains the same. For the correct syntax for each chart type, see the APEX online documentation.

Creating a Chart

Let’s create a pie chart that shows the count of tickets in each status. Later you'll link the action of clicking a pie piece
to filtering the tickets report to show only tickets of that status. Follow these steps:

1. Edit any page of the application.

Click the Create button at upper right on the page, and select New Page.

Select Chart, and click Next.

Select HTML5 Chart from the select list.

When the page refreshes, select Pie & Doughnut, and click Next.
Select 2D Pie, and click Next.

N o o &~ e Db

Enter 500 for Page Number and Tickets by Status for both Page Name and Region
Name, and set Breadcrumb to Breadcrumb (see Figure 7-74). When the page reloads,
enter Chart for Entry Name, as shown in Figure 7-75, and click Next.

196

| (H Cancel |

Application:

* Page Number

* Page Name

* Region Template
* Region Name

Breadcrumb

123 - Help Desk
500
Tickets by Status
Chart Region
Tickets by Status

Breadcrumb

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Next »

Figure 7-74. Setting the Page Number, Page Name, and Region Name attributes for a chart

Create Breadcrumb Entry

Entry Name

Parent Entry

Chart

No parent breadcrumb entry

Select Parent Entry:

Name
Analysis
Calendar
H

ome

Caontact Us

Create a Ticket

Tickets

Manage Multiple Tickets

Manaage Tickets

Ticket Details

Figure 7-75. Setting the breadcrumb attributes for a chart

[No parent breaderumb entry]

Page
300
400

]

3

2

200
230
210
220

row(s)1-90of9

Set Tab Options to Use an existing tab set and create a new tab within the existing tab
set. When the page refreshes, set Tab Set to TS1 (Home, Tickets, Analysis), enter Chart

for Tab Label, and click Next (see Figure 7-76).

197

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

€ | cancel Next)
Page: 500
Tab Options: Do not use tabs

(E) Use an existing tab set and create a new tab within the existing tab set.
Use an existing tab set and reuse an existing tab within that tab set

* Tab Set T51 (Home, Tickets, Analysis...) =

*Tablabel | Char|

> Tabs

Figure 7-76. Setting the tab attributes for a chart

9. Set Chart Title to Ticket Statuses, and click Next.

10. Locate and open the file ch7_query. txt, which you can find where you extracted the book
files. The contents of the file should be similar to this query:

SELECT
'f?p=8APP_ID.:200:"' || :APP_SESSION || '::::P200 STATUS ID:' || sl.status id link,
sl.status label,
count(*) value
FROM
tickets t,
status_lookup sl
WHERE
t.status_id = sl.status_id
GROUP BY
sl.status_id, sl.status
ORDER BY
3 DESC

11. Paste the contents of the file ch7_query.txt into the Enter SQL Query or PL/SQL

Function Returning a SQL Query region, or type the previous query into the region, and
click Next.

12. Click Create.

Run the page. Your chart should look similar to the one in Figure 7-77.

198

CHAPTER 7 = FORMS AND REPORTS—ADVANCED

Ticket Statuses

CLOSED -4

_—PENDING -3

Figure 7-77. The Ticket Statuses chart

Filtering Data Using a Chart

The link that you included in your SQL statement passes a status value to the P200_STATUS_ID field on page 200.
However, you haven't created that item yet. The next steps create the item P200_STATUS_ID on page 200 so that when
a slice of the chart is clicked, the report can filter based on the status:

1. Edit Page 200 of the application.

2. Create a new item by right-clicking the Items node in the Tickets region and selecting
Create Page Item.

3. Select Select List, and click Next.

4. Enter P200_STATUS_ID for Item Name, set Sequence to 15, and click Next (see Figure 7-78).

199

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

| (H Cancel |

Page: 200 - Tickets

Display As: Select List

* ltem Name | P200_STATUS_ID|

* Sequence 15

* Region | Tickets (10)

> Items

Figure 7-78. Adding a P200_STATUS_ID item

5. Enter Status for Label, and click Next.

6. Accept the defaults on the next page, and click Next.

7. To setthe LOV attributes, set Named LOV to P210_TICKETS_STATUS_ID, ensure that
Display Null Values is set to Yes, enter - All Statuses - for Null Display Value,
enter % for Null Return Value, and click Next (see Figure 7-79).

| (H Cancel |

Use this page to define the list of valu

Values Examples section for examples.

Application/Page:

Display Null Value
Null Display Value
Null Return Value

Cascading LOV Parent Item(s)

* List of Values Query

Create or edit static List of Values Create Dynamic List of Values

> List of Values Examples

Figure 7-79. Setting LOV attributes for new item P200_STATUS_ID

8. Inthe Default field, enter %, as shown in Figure 7-80, and click Create Item.

200

123/200

P200_STATUS_ID

Select List
P210_TICKETS_STATUS_ID

Yes =

- All Statuses -|

%

Next >

Next >

es. Either construct a SOL statement with the number of columns required by the item type, or use the STATIC syntax. See the List Of

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Identify the source of the item. If the item source is null the default value will be used.

Page: 200 - Tickets
Item Name: P200 _STATUS ID
Display As: Select List
Source Used Only when current value in session state is null
* Source Type Static Assignment (value equals source attribute) +

Item Source Value

Format Mask A

Default:

4

Item Default Type Static Text with Session State Substitutions %

Figure 7-80. Setting the default value for the new item P200_STATUS_ID

By default, the new item is placed on a new line. The fact that you chose 15 for the sequence places it between
the existing text field and the Go button. You need to edit the new select list so that it appears on the same line as the
search field:

9. Edit the new field P200_STATUS_ID by double-clicking its name.
10. Inthe Grid Layout section, set Start New Row to No, and click Apply Changes.

Finally, you have to change the query for the Tickets report on page 200 to account for the value of the item
P200_STATUS_ID is set to:

11. Edit the Tickets report on page 200 by double-clicking its name.

12. Append the following line to the end of the query, and click Apply Changes:
AND tickets.status_id LIKE :P200_STATUS_ID

Now, run the application and navigate to the Chart page. Click any value in the chart, and that value should be
passed to the Tickets page and passed in to the Status filter. The resulting report should only display those records that
correspond to the status that was clicked in the chart.

Looking Behind the Scenes

Viewing the Chart page in the Application Builder, you see that the only element generated is the chart region in the
Page Rendering region, as shown in Figure 7-81. The chart region is interesting in that it has a Series element, which
contains your SQL query. The chart region embodies the logic that passes your query to the AnyChart engine to
produce the chart.

201

CHAPTER 7 © FORMS AND REPORTS—ADVANCED

Page Rendering L

B[] Tickets by Status
H Before Header
After H
Before Regions
Regions

= Body (3)

[I W
U1k 1th

¥ After Regions

H Before Footer
[H After Footer

- Dynamic Actions

Figure 7-81. Page Rendering section of the Ticket Statuses chart

In APEX 4.2 chart regions, there is no longer a Source section in the region definition. The source that drives the
data is actually contained within the Chart Series on the Chart Attributes tab.

Summary

You've reviewed most of the APEX forms and reports types, and you've walked through building various forms and
reports for the Help Desk system using the APEX form and report wizards. You created an interactive report and
made adjustments as a developer and an end user. You've been introduced to charts, and you added a chart to the
application to visualize your ticket status.

The common theme is that the APEX form and report wizards are huge time-savers for developers, creating all
the objects—items, buttons, branches, processes, and so on—needed for a working form, report, calendar, or chart.
You were able to alter the created objects to quickly customize the generated form or report to suit your needs. Still,
you haven't strayed far from what APEX builds for you.

As your application becomes more complex, there will be places where you wish to add code to enforce
business rules or perform more complex processing logic than a simple insert, update, or delete. To do so, you can
use the various programmatic elements of APEX. The next chapter addresses the topics of validations, computations,
and processes.

202

CHAPTER 8

Programmatic Elements

This chapter covers the programmatic elements that can provide both simple and complex features to the APEX
framework. APEX provides simple declarative features with wizards to guide you. Because of its integration with

the database, APEX can also use the full power of the PL/SQL engine inside the Oracle database. Now, with the
implementation of APEX 4, even JavaScript interactivity has been made declarative and extendable in the framework.

Conditions

Throughout the building of the Help Desk application, there are times when you want to take advantage of the
conditional logic available with APEX components. Rather than try to understand every type of condition (there are
60 in the list of condition types), you should focus mainly on grasping the concept of a condition.

The condition feature provides a place where logic can turn on or off the particular piece of APEX technology.
Before action is taken to display or execute a particular APEX component, the condition applied to that component is
evaluated for a TRUE or positive result.

The logic options available to develop a condition are very broad. The condition type defines the particular
mechanics used to evaluate the condition using parameters as appropriate. Simple page-item comparisons are the
easiest to explain. For example, a process may only need to be run if a particular page item has a value. In the case of
sending an e-mail, an attempt to send a message should be made only if an e-mail address is given. From that simple
start, conditions can become as complex as you need them to be. In advanced cases, conditions can also include
browser and web server options.

Take time to review the condition types that are available and become familiar with their usage. It isn’t as
important to understand the technical implementation or syntax of each item as much as what options make up
a single condition. This familiarity will be helpful when you start defining APEX components and understanding
considerations for a flexible and modular application design.

Required Values

Requiring a value is a common need, and APEX 4.0 and above supports required values through what is essentially
aNOT NULL flag at the page-item level. You don’t need to create a full-blown validation (discussed next) to make an
item required. You simply make a choice from a drop-down list.

Continuing the Help Desk application, let’s implement a Value Required validation on the Subject field:

1. Edit Page 210 of the application.
2. Edit the P210_DESCR page item.

203

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

3. Inthe Settings section, change Value Required to Yes, as shown in Figure 8-1.
(Depending on how you set up your UI Defaults, Value Required may already be set
to Yes.)

Settings ~

Value Required | Yes 3| A
Resizable Yes +
Auto-Height No

Character Counter No

Figure 8-1. Requiring a value to be present

4. Click the Apply Changes button.

To test the new validation, start by creating a ticket. Before you enter any values, click the Create button. Figure 8-2
shows the expected results with both a consolidated page-validation message box and item-validation messages.

2 errors have occurred

« Subject must have some value. (Go to error)
« Description must have some value. (Go to errar)

Manage Tickets
Cancel Create

Subject
Subject must have some value

Description
Description must have some value.

Figure 8-2. Validation showing required values for two elements both inline and consolidated at the page level

In the application, the Subject element was already set up with a value requiring validation. This was done
because when you created the form using the wizard, APEX took into account the NOT NULL property of the column
at the table level. You also see that the APEX wizard chose an item label template that includes an asterisk (*) at the
beginning of the label text. This gives the end user the visual clue that the column is required. Be careful, however,
that you don’t mistake choosing a label that indicates that the field is required for actually making the field required
using either the VALUE_REQUIRED attribute or a validation.

The error messages for multiple validations are cumulative. You see all validation messages when a page is
processed.

Note The message text shown is a default and can be replaced by application-specific text as a feature of globalization
in the Shared Components area. There is only a single default for the entire application per language. When you need
custom messages in a single-language application, we recommend using standard validation types that allow a different
message for each validation you create.

204

CHAPTER 8 = PROGRAMMATIC ELEMENTS

Validations

The purpose of validations is to assist in providing data quality and to ensure integrity of data entered by the user.
Mechanically, validations are tests that evaluate to TRUE or FALSE. Validations are evaluated when a page is processed
or submitted. All of the validations are evaluated; a FALSE return from any one of them prevents additional page
processes from executing and, ideally, results in feedback to the user. Validations can also be executed on the client
side using JavaScript. Although the interactive nature of JavaScript can be very attractive in the user interface, it can
also be circumvented easily. Any validations that are executed in JavaScript should also be supported with appropriate
validations during page processing or at the database level.

Note It's a good practice to assume that every transaction is malicious. It’s possible to implement validations strictly
for security purposes, but sometimes it’s difficult to step away from a process enough to identify where weak points may
exist. For example, in a shopping cart application, what would happen to the total if someone ordered -1 of a product?
Would they automatically get a credit? Take extra time in the development process to look at your application to identify
where security weaknesses may exist and implement features to make it generally more robust and secure.

There are four types of validations: item level, page level, and, for tabular forms, column level and row level.
Item-level validations operate against a single APEX item. Page-level validations are used when multiple items are
involved in validating the condition. Tabular form validations behave similarly but against the columns and rows of
the tabular form. You use an example of each in the Help Desk application.

Item-Level Validation

Validations on a single element can have attributes specific to that element, and behavior can be customized as
required by that element. The example you implement here is a validation that checks its condition only when a specific
criterion is true. The requirement is to have an end date entered whenever the status is closed. Follow these steps:

1. Edit Page 210 of the application.

2. Using the Create button, select Page control on this page as shown in Figure 8-3.

m Utilities » Create v

New page
+ Region on this page
Shared component @
New page as a copy
Bug
To Do

Comment

Figure 8-3. Preparing to create a validation for the page

205

CHAPTER 8 © ' PROGRAMMATIC ELEMENTS

3. Select Validation for the control type, as shown in Figure 8-4, and then click Next.

‘ L4 H Cancel ‘

Application: 123 - Help Desk

Add a page control to this page:

() tem (C) Button _) Branch
L [BSSSS— ey
@ - = @mm = @
i_' © - i—- © - ‘r—- -
(©) Computation () Process (=) validation
L3
| o
—~d— o Gmm
— (@] = @ 4
- — |

Figure 8-4. Choosing to create a validation

4. Select Page Item for the validation level, as shown in Figure 8-5, and click Next.

‘ Cancel ‘

Page: 210 - Manage Tickets
Identify the validation level:

(*) Page ltem

ml
i

.

» About Validations

Figure 8-5. Selecting Page Item validation

5. Select the item to validate, P210_CLOSED_ON (Closed ON), from the list of items
in Figure 8-6.

206

Next »

Next >

CHAPTER 8 = PROGRAMMATIC ELEMENTS

| £ || Cancel | Next >

Page: 210 - Manage Tickets

Identify the Page Item that is to be validated:

Manage Tickets: 10. P210_TICKET_ID (Ticket Id)

(©) Manage Tickets: 20. P210_SUBJECT (Subject)

() Manage Tickets: 30. P210_DESGR (Description)

Manage Tickets: 40. P210_ASSIGNED_TO (Assigned Ta)

Manage Tickets: 50. P210_CREATED ON (Created On)

() Manage Tickets: 60. P210_CREATED_BY (Created By)

Q Manage Tickets: 120. P210_CLOSED_ON (Closed On)

_- Manage Tickets: 180. P210_STATUS_ID (Status)

() Manage Tickets: 190. P210_TICKET_ID_NEXT (P210_TICKET_ID_NEXT)
() Manage Tickets: 200. P210_TICKET_ID_PREV (P210_TICKET_ID_PREV)
_) Manage Tickets: 210. P210_TICKET_ID_COUNT

» Existing validations on this page

Figure 8-6. Selecting an item to validate

Note There is a shortcut for getting to the item validation. The right mouse button context menu on the page element
includes an option to create a validation for the element you've selected.

6. Enter a sequence number and a name. The validation sequence and name are strictly for
your reference. In this case, a name is sufficient, and the sequence isn’t important. Leave
the defaults as shown in Figure 8-7, and click Next.

| £ || Cancel | Next >

Specify the sequence in which your validation executes. ldentify a name for the validation to make it easy to locate in the future. Also specify the location where an error
message display if the validation fails.

Page: 210

Item: P210_CLOSED_ON

* Sequence ‘ 10 |
* validation Name P210_CLOSED _ON

Error Display Location | Inline with Field and in Notification # |

Figure 8-7. Specifying the sequence, name, and display location

7. Select Not Null for the validation type from the options shown in Figure 8-8.

207

CHAPTER 8 © ' PROGRAMMATIC ELEMENTS

‘ L4 H Cancel ‘ Next)

Page: 210 - Manage Tickets
Iltem: P210_CLOSED_ON

Select a validation type:

(= Mot Null (0) String Comparison (_) Regular Expression
L | L
+ + +
saL) PL/SQL
| |
4 +

> Existing validations on this page

Figure 8-8. Selecting a validation type

8. Inthe validation step of the wizard, enter a custom error message. The error message
in Figure 8-9 uses a substitution variable #LABEL# to include the label of the item in the
message. This way, when the label on the form item changes in the future, the validation
error message will automatically reference the new label.

‘ £ H Cancel | Create Validation |

Page: 210
item: P210_CLOSED_ON
valigation Type: Item / Column specified is NOT NULL

* Error Message
Please enter a value for #LABEL#.l

[Error] [#LABEL# must have some value.]

Always Execute | No + |
Figure 8-9. Error message definition

9. Click Next.

In this step of the wizard, you can make the validation apply only when the current status is CLOSED:

10. Set Condition Type to PL/SQL Function Body Returning a Boolean, as shown in
Figure 8-10.

208

CHAPTER 8 = PROGRAMMATIC ELEMENTS

(Cancel Create Validation

Page: 210
Item: P210_CLOSED_ON
Validation Type: Item / Column specified is NOT NULL
When Button Pressed: | - Select Button -

Condition Type
PL/SQL Function Body Returning a Boolean
[PL/SQL] [item / column=value] [item / column not null] [item / column null] [request=e1] [page in] [page not in] [exists] [never] [none]

Expression 1

IF :P218_STATUS_TD = get_status('CLOSED') THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END IF;|

Do not validate code (parse code at runtime only).

» Page ltems

Figure 8-10. Setting the condition that must evaluate to TRUE for the validation to be used

11. When the page refreshes, type the following code into Expression 1:

IF :P210 STATUS ID = get status('CLOSED') THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END IF;

12. Click the Create Validation button to complete the wizard.

Once the validation has been created, it appears in the Page Rendering and Page Processing sections on the

APEX Page Definition screen, as shown in Figure 8-11. Both references point to the same implementation and
are shown for easy navigation.

.. 2 P210_CREATED_ON : L. P220_TICKET_DETAILS_ID
.. = P210_CREATED BY B Validating

B §= P210_CLOSED ON L Ep Branches
B Validations = B validations

Bl Processing
i~ G Branches

M B Memmamean

. 2 P210_STATUS_ID
.. 3 P210_TICKET_ID_NEXT

A A A TS ST M P

Figure 8-11. Validations created appear in two places on the Application Builder page

This validation now requires that a value be entered for the Closed On item when the ticket status is set to
CLOSED. The condition applied to the validation is evaluated every time the page is submitted.

209

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

Page-Level Validation

Page-level validations apply to one or more items simultaneously and often can be an entire PL/SQL block of code
that must evaluate to TRUE in order for the validation to be successful. The requirement for the Help Desk application
is to compare the Created On date with the Closed On Date to ensure that they occur in chronological order. A ticket
that is closed before it’s created doesn’t make any sense. This is a good example of using a validation to ensure data
quality. Here’s how to create the validation you need:

1. Edit Page 210 of the application.

Using the Create button, select Page control on this page.

Select Validation, and click Next.

Select Page for Validation Level, and click Next.

A

Enter Closed Date must be After Creation Date for Validation Name, and set Error
Display Location to Inline in Notification, as shown in Figure 8-12. Click Next.

€ || cancel Next >

Specify the sequence in which your validation executes. Identify a name for the validation to make it easy to locate in the future. Also specify the location where an error
message display if the validation fails.

Page: 210

* Sequence 20

* Validation Name | Closed Date must be After Creation Date

Error Display Location Inline in Notification

Figure 8-12. Validation name and display location

6. Choose PL/SQL for Select a validation type, as shown in Figure 8-13, and click Next.

€ || cancel Next >

Page: 210 - Manage Tickets
Select a validation type:

D saL @ PL/3QL
[l |

13 13

> Existing validations on this page

Figure 8-13. Choosing to create a validation involving PL/SQL code

210

CHAPTER 8 = PROGRAMMATIC ELEMENTS

7. Select Function Returning Boolean for Pick the type of validation you wish to create, as
shown in Figure 8-14, and click Next.

€ || cancel Next)»

Page: 210 - Manage Tickets

Pick the type of validation you wish to create:
() PL/SQL Expression

() PL/SQL Error

(® Function Returning Boolean

() Function Returning Error Text

Figure 8-14. Choosing the form in which you implement the PL/SQL validation code

The validation step in the wizard does the bulk of the work. Here you need to enter the code for the validation.
You also define the error message that is displayed as a result of validation failure:

8. Enter Closed On Date must be Later than the Created Date for Error Message,
and type the following code into the Validation Code text area. Figure 8-15 shows the
completed values. Click Next to continue:

£ Cancel Create Validation Next >

Page: 210
Validation Type: Funetion Returning Boolean

* validation Code

IF TO_DATE(:P218_CREATED_ON, 'DD-MON-YYYY'} >
TO_DATE(: P210_CLOSED_ON, ' DD-MON-YYYY ')
THEN
RETURN FALSE;
ELSE
RETURN TRUE;
END TF;

* Error Message

Closed On Date must be Later than the Created Date.

[Errer] [#LABEL# must have some value.]

Always Execute No *

Figure 8-15. The code for your PL/SQL validation

IF TO_DATE(:P210_CREATED ON, 'DD-MON-YYYY') >
TO_DATE(:P210_CLOSED ON, 'DD-MON-YYYY")
THEN
RETURN FALSE;
ELSE
RETURN TRUE;
END IF;

9. Youdon't need a condition on this validation. Click Create Validation to finish the wizard.

211

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

In your application you now have a feature that helps ensure the quality of the data being entered. This type of
data check makes sure any metric that calculates time from start to end doesn’t produce a negative answer due to
dates. This improves the quality of the data and the reliability of the metrics that are produced in reports.

Tabular Form Validation

Tabular forms in APEX 4.2 are able to perform validations better than in previous versions. The wizard that creates
a tabular form also adds validations for you. The wizard creates validations automatically based on the data model.
However, a wizard can only know so much about your business process, and the data model may have more flexibility
than you want in your application.

Looking at the definition of page 230, the wizard has created a number of Not Null validations for you, based on
the NOT NULL attributes in the underlying TICKETS table. However, the wizard can’t know that you require a Closed On
date when a ticket is closed. You apply that validation using a column-level tabular form validation:

1. Edit Page 230 of the application.

Using the Create button, select Page control on this page.

Select Validation, and click Next.
In the Tabular Form select list, choose Manage Multiple Tickets.

Once the page has refreshed, select Column for Validation Level, and click Next.

SR T o

Select 8. CLOSED_ON (Closed On) for Identify the Column that is to be validated, as
shown in Figure 8-16, and then click Next.

€ || cancel Next >

Page: 230 - Manage Multiple Tickets
Tabular Form: Manage Multiple Tickets

Identify the Column that is to be validated:
4. SUBJECT (Subject)
5. DESGR (Description)
6. ASSIGNED_TO (Assigned Tao)
7. CREATED _ON (Created On)
(&) 8.CLOSED_ON (Closed On)
9. CREATED_BY (Created By)
10. STATUS_ID (Status)

> Existing validations on this page

Figure 8-16. List of items available from the tabular form

7. SetValidation Name to CLOSED_ON is Not Null if Ticket is CLOSED and
Error Display Location to Inline with Field and in Notification, as shown in Figure 8-17.
Click Next.

212

CHAPTER 8 = PROGRAMMATIC ELEMENTS

‘ZH Cancel Next)»

Specify the sequence in which your validation executes. Identify a name for the validation to make it easy to locate in the future. Also specify the location where an error
message display if the validation fails.

Page: 230
Tabular Form: Manage Multiple Tickets
GColumn: GLOSED_ON

* Sequence 100

* Validation Name | CLOSED_ON is Not Null if Ticket is CLOSED]| |

Error Display Location | Inline with Field and in Notification # |

Figure 8-17. Setting Validation Name and Error Display Location

8. SetSelect a validation type to Not Null, as shown in Figure 8-18. Click Next.

‘ZH Cancel Next)

Page: 230 - Manage Multiple Tickets
Tabular Form: Manage Multiple Tickets
Column: GLOSED_ON

Select a validation type:

(=) Not Null () String Comparison () Regular Expression
| L |
+ + +
o saL) PL/SQL
| |
el e
+ +*

» Existing validations on this page
Figure 8-18. Specifying the validation type

9. For Error Message, enter #COLUMN_HEADER# must be entered if Status is CLOSED,
as shown in Figure 8-19. Click Next.

213

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

(Cancel Create Validation Next)
Page: 230

Tabular Form: Manage Multiple Tickets

Column: CLOSED_ON

Walidation Type: Item / Column specified is NOT NULL

* Error Message

#COLUMN_HEADER# must be entered if Status is CLOSED.

[Error] [#COLUMN_HEADER# must have a value.]

Always Execute | No

Figure 8-19. An error message using substitution variables

10. Set Condition Type to PL/SQL Function Body Returning a Boolean, and type the
following code into Expression 1:

IF :STATUS ID = get status('CLOSED') THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END IF;

11. Make sure Execute Condition is set to For Each Row, and click Create Validation.

When you run the Manage Multiple Tickets page, you can test the new validation either by adding a new ticket
with a status of CLOSED and no Closed On date set, or by removing the Closed On date of an existing closed ticket and
attempting to save the changes. In Figure 8-20, each row that doesn’t meet the validation requirement is highlighted

and appears in a list of errors at the top of the page. In this example, the row that didn’t have a Closed On date failed
the validation and is flagged as needing attention.

1 error has occurred b3

« Closed On must be entered if Status is CLOSED. (Row 2)

Manage Multiple Tickets

| Cancel || Delete || Save Changes || Add Tickets |
O Subject Description Assigned To Created On Closed On Created By Status
Cannot log into E-Mail User called and cannot log . .
into his MS Outlook e-mail Scott + 25-NOV-2012 25-KNOV-2012 Paul : OPEN
Al Account P
MSIE Crashed 4 times MSIE keeps on crashing for B .
any site Doug : 22-NOV-2012 [Martin : CLOSED &
4 4

Figure 8-20. Results that fail validation are highlighted and presented in the message area

214

CHAPTER 8 = PROGRAMMATIC ELEMENTS

Note By default, these validations are only executed for new or changed rows. You can change this behavior by
setting the Execution Scope of the validation, located in the Conditions section.

The Create Validation wizard also allows the creation of row-level validations on tabular forms. These validations
are run once for each row being processed by the tabular form. At this level, you could easily create a validation,
similar to the one created for page 210, that checked to see if the Closed On date was after the Created On date.

As an exercise to see how much you've learned, see if you can implement that validation at the row level of the
tabular form on page 230.

Computations

The APEX computation is analogous to a PL/SQL function. The intent is to act on an item in the application by setting
the value using a variety of methods. This allows information to be derived rather than just stored in the data tables.
Computations can be implemented when a page is rendered or after a page is submitted back to the server, depending
on the needs of the application. Computations can act on any item available within an application. Items that can be
set include items on the current page, items on another page, and even application-level items.

There is also a type of computation that can be used at the application level. It’s available in an application’s
shared components. This type of computation has additional options for execution points including a computation
point called On New Instance that executes when a new session (or instance) is given to a user when they log in.

Execution

It's important to understand when a computation is executed relative to when a value is shown on a page and to when
other values are available to the computation. When using the value of an item in a computation, the current session
state for that item is the value that is used. A computation sets an item value in session state, and any processing
(computations, validations, or processes) that uses that item after it has been set sees the results of that computation.
When a page is rendered, it shows what is in the session state for that item at the time it's shown on the page. The
computation point is the setting that determines when the computation is executed.

On the page definition screen, several computation points are shown in the page tree. You can adjust the
computation point by clicking and dragging the computation in the tree to a different computation point, or by editing
the computation and changing the values for the sequence and computation point directly. The sequence only orders
the computations within a given computation point. In general, the page renders and processes as shown on the page
definition screen, starting at the top and going down the list to the bottom. There are only minor exceptions, such as
dynamic actions and AJAX callbacks, which have variable points of execution.

Types

Computations have much of the same flexibility as other APEX components. They can be complex or simple, with the
full capabilities of the Oracle Database to support them. The types of computations are as follows:

e Static Assignment: Simple static text value
e PL/SQL Function Body: PL/SQL function syntax with a RETURN statement

e SQL Query (Return Single Value): Any SQL statement as long as it returns a single row and
a single column

e SQL Query (Return Colon Separated Values): SQL used for multiselect items

215

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

e SQL Expression: Expression used in the SELECT portion of an SQL statement
e PL/SQL Expression: Same as SQL Expression
e Jtem Value: Name of another item in the application

Computations can be conditional in the same manner as many of the other APEX components. The conditions
can be as complex as the business rules require with the ability to use the database features and APEX session items to
evaluate the condition. Conditions evaluating to TRUE result in the computation being executed.

Creating a Computation

The Help Desk application has a requirement to display the number of days a ticket has been open. The result should
be a derived value and change depending on the day and status of the record being reviewed. You accomplish this by
putting a new item on the page that displays the result of the computation:

1. Edit Page 210.
Use the shortcut this time to create your page item:

2. Right-click while hovering over the Items section in the Manage Tickets region of the Page
Rendering tree shown in Figure 8-21, and click Create Page Item.

B Regions

= Body (3)

B [] Manage Tickets

EJ ltems |

Create Page ltem
Create Page ltem Butt{g%
Edit All

Expand All

Collapse All
F g PZTU COUSED UM

Figure 8-21. Using the shortcut menu to create a new page item
3. Select Display Only, and click Next.

4. Enter P210_DAYS_OPEN for Item Name. The other values can be left at the defaults,
as shown in Figure 8-22. Click Next.

216

CHAPTER 8 = PROGRAMMATIC ELEMENTS

€ || cancel Next)»

Page: 210 - Manage Tickets
Display As: Display Only

*ltem Name P210_DAYS_OPEN

* Sequence ‘ 220 ‘
* Region | Manage Tickets (0}
> ltems

Figure 8-22. Entering an item name

5. Foritem attributes, leave the default values. Click Next.
6. For settings, leave the default values. Click Next.
7. For source, leave the default values. Click Create Item.
Now there’s a new item in the region that you use as a container for the calculation.

8. Edit the newly created P210_DAYS OPEN by double-clicking the item.

9. Inthe Conditions section, set Condition Type to Value of Item / Column in Expression 1
Is NOT NULL.

10. When the region refreshes, set the value of Expression 1 to P210_TICKET _ID, as shown
in Figure 8-23.

Conditions N

Condition Type
Value of Item / Column in Expression 1 Is NOT NULL

[PL/SQL] [item / column=value] [item / column not null] [item / column null] [request=e1] [page in] [page notin] [exists] [never] [none]

Expression 1
P21@_TICKET_T0|

Figure 8-23. Showing an item only when another item contains a value

11. Click Apply Changes to complete the update of the condition.

12. Right-click P210_DAYS OPEN, and from the context menu, select Create Computation,
as shown in Figure 8-24.

217

CHAPTER 8 © ' PROGRAMMATIC ELEMENTS

N o= £210 DAYS OPEN

E| Req Edit
Create
Create Page [tem Button
Create Dynamic Action
Create Validation
B Su Create Computation {E'?
Copy
B T Rename
Re Expand All
=R Collapsell

Figure 8-24. Using the right-click shortcut to create a computation

13. Set Computation Type to SQL Query (Return Single Value). All other values should have
defaults similar to those shown in Figure 8-25. Click Next.
‘TH Cancel ‘ Next »

ch you would like to perform the computation. You can perform computations at different points. Computations that execute at the same point
nce number provided.

Select the it
are perfo

em and point at whi
d in order of the s

Page: 210 - Manage Tickets

* Computeltem | 220. P210_DAYS_OPEN (Manage Tickets)

*Sequence | 11

* Computation Point | Before Header =

* Computation Type l S0L Query (return single value)

Figure 8-25. Setting the computation type

14. Inthe Computation text area, enter the following SQL statement (also shown in Figure 8-26),
and then click the Create Computation button:

218

CHAPTER 8

(Cancel

Enter the text of your computation. The identified item's value will be set to the result of your computation when the computation executes.

Page: 210 - Manage Tickets

Compute Item: P210_DAYS_OPEN

Computation Type: SQL Query (return single value)

* Gomputation:

SELECT

DECODE(status,

FROM

(

SELECT
ROUND(sysdate - t.created_on) open_or_pending,
NVL(ROUND(t.closed_on - t.created_on},d) closed,
sl.status status

FROM
tickets t,
stotus_lookup sl

WHERE
t.stotus_id = sl.status_id
and t.ticket_id = :P218_TTCKET_TD)|

"CLOSED', closed, open_or_pending) days_open

> Page Items

Figure 8-26. Entering the SQL statement for a computation

SELECT

DECODE(status, 'CLOSED', closed, open_or pending) days_open
FROM
(
SELECT
ROUND(sysdate - t.created on) open_or pending,
NVL(ROUND(t.closed on - t.created on),0) closed,
sl.status status
FROM
tickets t,
status_lookup sl
WHERE
t.status_id = sl.status_id
and t.ticket id = :P210 TICKET ID)

15.

Create Computation

PROGRAMMATIC ELEMENTS

Next)

Optionally, move the Days Open counter next to the Subject using drag and drop within the

tree. You can then position them on the same line by editing P210_DAYS_OPEN and setting

the Start New Row attribute to No. Figure 8-27 shows the element in its new position.

= Body (3)

B[] Manage Tickets

! O ltems

L g3 P210_TICKET ID
- =2 P210_SUBJECT

= =
d= P210_DESCR
- 43 P210_ASSIGNED_TO

Figure 8-27. Moving the item to its new position

219

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

To see the results of adding the new item, run the application and navigate to the Tickets report (page 200). Click
one of the Edit icons to bring up the single record view (page 210). You should now see the result of the computation
as a number of days. When starting the process of creating a new ticket, the field isn’t displayed because the condition
prevents the field from showing.

Processes

If computations are analogous to database functions, then processes are analogous to database procedures. A process
is a container for a unit of logic.

Processes are arguably the most complex part of APEX, because they're the construct used to deal with
data processing in the database as well as references to APIs such as those used to send e-mail and perform any
other business logic required in the application. When dealing with data forms, the APEX wizard creates built-in
processes that manage the reading and writing of data from the form. Those types of built-in processes are called
data-manipulation processes.

Processes, similar to computations, can occur during both page rendering and page processing. In the Page
Definition screen, the processing locations are identified by the gear icons. Processes support the APEX conditions
feature, which allows processes to be written as individual logic units with conditions determining whether the logic
is needed.

Execution Points

Process execution points are the same as for computations. The most commonly used execution points for processes
are On Submit - After Computations and Validations and On Demand - Run This Process When Requested by AJAX,
because as these points support button-press activities and dynamic actions. The full list is as follows:

e On New Instance - (New Session)

e OnLoad - Before Header

e OnLoad - After Header

e OnLoad - Before Regions

e OnLoad - After Regions

e OnLoad - Before Footer

e OnLoad - After Footer

e On Submit - Before Computations and Validations

e On Submit - After Computations and Validations

e OnDemand - Run This Process When Requested by AJAX

Processes can be defined at the individual page level or at the application level as part of the shared components.
Functionally, page processes and application processes behave the same. The difference is where business logic
is contained. For processes that need to run on all pages, you can define an application process. Also, just as with
regions, you can use Global Pages to define processes that run on every page, but only for page rendering.

220

CHAPTER 8 = PROGRAMMATIC ELEMENTS

Process Types

Each different process type has a different use depending on the requirement. The types and their uses are as follows:

PL/SQL: General use for utilizing database PL/SQL logic

Reset Pagination: Resets pagination for a report

Session State: Clears session state values; also referred to as cache

Data Manipulation: Built-in processes for reading from and writing to the database
Web Services: Submits a request to a web service provider

Form Pagination: Most often used in master-detail forms

Send Email: Declarative interface to easily send e-mail

Close Popup Window: Supports pop-up window handling

Run On Demand Process: Calls an application-level on-demand process

Plug-ins: Processes functionality provided by plug-ins

Processes in the Help Desk Application

The details behind processes can be very complex. In order to provide an adequate example, let’s include a simple
process in the Help Desk application: a requirement that the application keep track of the last time a record was
modified. You can do this by updating a Last Updated date on the record every time it’s saved. There’s more than one
way to accomplish this task. Here you do it with a process.

First, you need to add the LAST_UPDATED field to the TICKETS table. To do this you use the SQL Workshop again:

1.

2.
3.

From the SQL Workshop drop-down menu, choose Object Browser, as shown
in Figure 8-28.

S50QL Workshop » | Team Devel
! Object Eirowser@]
SQL Commands
SQAL Scripts
Query Builder
Utilities
- Data Workshop
- Object Reports
- User Interface Defaults

| RESTiul Services

Figure 8-28. Navigating to the SQL Workshop Object Browser

Select the TICKETS table from the list of objects at left.

Click the Add Column button above the table definition, as shown in Figure 8-29.

221

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

Table Data Indexes Model Constraints Grants Statistics Ul Defaults Triggers Dependencies SQL

Medify Column || Rename Column || Drop Column || Rename || Copy || Drop || Truncate || Create Lockup Table

Column Name Data Type Nullable Default Primary Key
TICKET_ID NUMBER No - 1
SUBJECT VARCHAR2(255) No
DESCR VARCHAR2(4000) Yes

ASSIGNED_TO VARCHAR2(50) Yes

CREATED_ON DATE Mo
CLOSED_ON DATE Yes
CREATED_BY VARCHAR2(50) Yes
STATUS_ID NUMBER Yes

Download | Erint

Figure 8-29. Adding a column to the table

4. Enter LAST_UPDATED for Column Name and DATE for Type, and click Next.
5. Click Finish.

Now you can add the process to the page:
6. Edit Page 210 of the application.

7. Inthe Page Processing tree, right-click the Processes node and choose Create from the
context menu, as shown in Figure 8-30.

Page Processing +

Bl After Submit
M % Pro

Create IS

Edit Al

o Expand All
Collapse All

F Validating
i- & Branches
= B validations
L. P20 CPOSEn Ok

Figure 8-30. Shortcut for creating a process at a specific process execution point

8. Select PL/SQL from the list of process types shown in Figure 8-31. Click Next.

222

CHAPTER 8 = PROGRAMMATIC ELEMENTS

‘ Cancel | Next »

Page: 210 - Manage Tickets

Select the category of the process you wish to create:

@ PL/SQL () Reset Pagination O Plug-ins
o
O gz =i :
() Session State () Data Manipulation () Web Services
4 | |
= ® == “a8
| é—‘t \ =
*) Form Pagination () Send E-Mail () Close popup window

4
— G==

_) Run On Demand Process

=

\XLH

N

@ﬂj

Figure 8-31. List of process types available

9. Setthe Name of the process to Set Last Processed, and set Point to On Submit - After
Computations and Validations, as shown in Figure 8-32. Click Next.

‘ £ H Cancel | Next)

Page: 210 - Manage Tickets
*Name Set Last Processed

* Sequence 50

* Point | On Submit - After Computations and Validations

*Type PL/SQL anonymous block

Figure 8-32. Name, sequence, and process-point definitions

Next is the step where you set the contents of your anonymous PL/SQL block. If you're unfamiliar with a PL/SQL
anonymous block, it’s PL/SQL code that has a BEGIN and an END that wrap the contents. You need to follow PL/SQL
syntax conventions, including ending statements with semicolons. It’s possible to nest anonymous blocks of code, but
isn’t necessary for this example:

10. Enter the following SQL into the Enter PL/SQL Page Process text area (see Figure 8-33):

223

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

‘ (H Cancel ‘ Create Process |

Page: 210 - Manage Tickets
Point: On Submit - After Computations and Validations

* Enter PL/SQL Page Process

UPDATE tickets SET laost_updated = sysdate
WHERE ticket_id = :P21@_TICKET_ID;

Do not validate PL/SQL code (parse PL/SOL code at runtime only).

> Page Items

Figure 8-33. Click the Next button

UPDATE tickets SET last updated = sysdate
WHERE ticket id = :P210 TICKET ID;

11. Click the Next button, being careful not to click Create Process, because you still want to
apply a condition to this process.

12. Leave both the Success and Error messages empty. These messages will appear at the top
of a page as feedback to the user after the process completes. Your requirements don't call
for you to notify the user that the Last Updated date was changed. Click Next again, being
careful not to click Create Process.

13. In the condition section, change When Button Pressed to SAVE (Apply Changes), as
shown in Figure 8-34. Finally, you may click the Create Process button.

< o

/hen Button Pressed
ter Submit

This proce

list. Any co ed must be met before the page process executes. W

Page: 210 - Manage Tickets

Point: On Submit - After Computations and Validations

When Button Pressed | SAVE (Apply Changes} s

Condition Type
- Process Not Conditional -

[PL/SQL] [item ¢ column=value] [itemn / column not null] [item / column null [request=e1] [page in] [page notin] [exists] [never] [none]

> Page Items

Figure 8-34. Setting the condition of the process to work only when the Save button is clicked

224

CHAPTER 8 = PROGRAMMATIC ELEMENTS

At this point, the process has been created. Currently you don’t show the Last Updated date in the summary
report. In order to see the value on the report, you need to add the LAST_UPDATED column to the query from which the
report draws data. That report resides on page 200 of your application:

1. Edit Page 200.
2. Edit the Tickets region by double-clicking the region’s name in the tree.

3. Addthe LAST_UPDATED date to the Region Source of the report, as in the following SQL.
Click Apply Changes when you're finished:

SELECT
"TICKETS"."TICKET_ID" "TICKET ID",
"TICKETS"."SUBJECT" "SUBJECT",
"TICKETS"."DESCR" "DESCR",
"TICKETS"."ASSIGNED TO" "ASSIGNED TO",
"TICKETS"."CREATED_ON" "CREATED ON",
"TICKETS"."CLOSED_ON" "CLOSED_ON",
"TICKETS"."CREATED BY" "CREATED BY",
"STATUS_LOOKUP"."STATUS" "STATUS",
"TICKETS"."LAST_UPDATED" "LAST_UPDATED"

FROM
"STATUS_LOOKUP",
"TICKETS"

WHERE "STATUS_ LOOKUP"."STATUS ID" = "TICKETS"."STATUS ID"

and upper(subject) like

'%' || upper(:P200 SEARCH) || '%'

and tickets.status_id like :P200_STATUS_ID

To test and review the change, run the application and navigate to the Tickets report. Edit any ticket, and click the
Apply Changes button. You should now see a value for Last Updated indicating the current day.

This is a quick example of how you can use a process to apply form-based logic. When the form is used to make
changes, a brief piece of PL/SQL makes a record change automatically. Packages, procedures, and APIs all can be
reached using processes similar to this one.

PL/SQL Regions

The PL/SQL region type is effectively an open container for PL/SQL with the additional option to generate output.
You can use Oracle Web Application (OWA) Toolkit procedures such as htp.p to generate the output. References

to APEX items can be made using bind variable syntax (for example, :P1_ITEM_NAME), the v function (for example,
v('P1_ITEM NAME')), or the substitution string syntax (for example, &1 _ITEM NAME.) to support the logic contained
in the region.

PL/SQL regions differ from process regions in that PL/SQL regions are executed only during page rendering
whereas processes can run on both page processing and page rendering. PL/SQL regions have the advantage of being
able to generate content directly on the page. A use case for this type of output is the need for a complex report format
that is beyond the ability of a standard report template. In that case, a PL/SQL package that generates the needed
HTML output can be written and called by a PL/SQL region.

225

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

In the Help Desk application, you want to make the home page a bit more useful by adding a quick summary of
the number of tickets an individual has open. This is applicable only if someone is logged in. So if they aren’t logged
in, a simple greeting message will suffice. You can accomplish the task of adding the summary by adding a PL/SQL

region with some logic to output the appropriate message:

1.
2.

Currently this region is a standard HTML region, emitting exactly the HTML code you enter into it. You want to

Edit Page 1.

Edit the APEX Issue Tracker region by double-clicking its name in the tree.

make it dynamic, so switch it to use PL/SQL:

3.

226

In the Identification section, change Type to PL/SQL (anonymous block), as shown

in Figure 8-35.

Identification

Page: 1 Home

*Title | APEX Issue Tracker exclude title from translation

Type PL/SOL (anonymous block)

Figure 8-35. Creating a PL/SQL region

Enter the following code for the Region Source, replacing the static HTML that was there,

and then click Apply Changes:

DECLARE
1 count NUMBER;
1 status_id NUMBER := get status('OPEN');
BEGIN
IF :APP_USER != 'nobody' THEN
SELECT count(*)
INTO 1_count
FROM tickets
WHERE assigned_to = :APP_USER
AND status_id = 1 _status_id;

htp.p('<h1>Welcome to the APEX Issue Tracking System,
|| :APP_USER || '</h1>'
|| '"You have ' || 1 count || ' Open tickets.
'
|| 'Select an option from the list');

ELSE
htp.p('<h1>Welcome to the APEX Issue Tracking System</h1>
|| 'Select an option from the list');
END IF;

END;

CHAPTER 8 = PROGRAMMATIC ELEMENTS

This code implements logic that makes a decision based on the user substitution variable : APP_USER and tailors
the htp.p output according to that distinguishing factor. APEX provides “nobody” as a username when a user isn’t yet
logged in, so the logic keys off of that value.

When the PL/SQL region is generated for a user who isn’t yet logged in, a simple welcome message is produced
(see Figure 8-36). When a user who has credentials is logged in to the application, a message similar to that in
Figure 8-37 is produced that shows a user-specific greeting and a quick count of the number of open tickets assigned
to that user.

APEX Issue Tracker

Welcome to the APEX Issue Tracking System

Select an option from the list
Figure 8-36. Issue Tracker PL/SQL region when the user isn’t yet logged in

APEX Issue Tracker

Welcome to the APEX Issue Tracking System, ADMIN

You have 0 Open tickets.
Select an option from the list

Figure 8-37. With an authenticated user, the PL/SQL region generates a greeting and a ticket count

In this section, you've created a dynamic PL/SQL region that alters the output based on the application user. This
section’s example, although simple, shows how the content of a region can be as dynamic as necessary with the use of
PL/SQL in the database.

Dynamic SQL

Dynamic SQL is a term for SQL that isn’t finalized at design time, but rather is assembled at runtime by any number of
dynamic criteria. Dynamic SQL is used when the exact requirements of a SQL statement aren’t known until runtime,
or when the SQL needs to change while the application is running. Dynamic SQL lets you modify column lists, where
clauses, joins, and any other portion of an SQL statement while an application is running.

APEX supports dynamic SQL in reports and can support PL/SQL functions returning SQL statements as a result.
There are some constraints, however. Functions must return a valid SQL statement. Depending on the implementation,
a statement may need to return a set of generic columns if the number of columns isn’t known or will vary.

The Help Desk application has the requirement to differentiate public tickets from private ones. To accomplish
that goal, you can implement a Public Flag feature. Implementing the flag requires a quick update to your data model
and then an implementation of dynamic SQL on the Home Page report. Start by making the data modification:

1. Navigate to the SQL Workshop.
2. Click the SQL Commands icon.

3. Enter the following SQL statement in the text area, and click the Run button. This adds the
new column called PUBLIC_FLAG to the TICKETS table:

ALTER TABLE tickets ADD (public_flag VARCHAR2(1))

227

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

4. Enter the following SQL statement in the text area, replacing the current statement, and
click Run. This updates all the current tickets to a default value of N:

UPDATE tickets SET public_flag = 'N'

Now that the data-model modifications are complete, you can move on to the application. Add the option to see
and edit the new value in the ticket edit screen:

5. Click the Application Builder tab.

6. Select the Help Desk application by clicking the corresponding icon or link.
7. Edit Page 210 of the application.
8

Add an item to the Manage Tickets region by right-clicking the region’s name and
selecting Create Page Item, as shown in Figure 8-38.

Bl Regions
= Body (3)
=] B Manage Tickets
Edit
Create

Create Page [tem
Create Page [tem ﬁ@tton
Create Region Button)

Create Dynamic Action
Greate Sub Region
Copy
Rename KT
Ev
Expand All
pan up

Collapse All

i M ARKTE

Figure 8-38. Adding a page item to be your public flag

9. Select Radio Group as Item Type, and click Next.

10. Enter P210_PUBLIC_FLAG for Item Name, as shown in Figure 8-39, select Manage Tickets (0)
for Region, and click Next.

228

CHAPTER 8 = PROGRAMMATIC ELEMENTS

(Cancel

Next)»

Page: 210 - Manage Tickets

Display As: Radio Group

*ltem Name | P210_PUBLIC_FLAG] |

* Sequence 240

*Region | Manage Tickets (0)

> Items

Figure 8-39. Specifying the item name

11. Set Label to Public Flagand Template to Required with help, as shown in Figure 8-40.

Click Next.

€ || cancel Next)»

Page: 210 - Manage Tickets
Item Name: P210_PUBLIC_FLAG
Display As: Radio Group
Label | Public Flag [Clear]

Template | Required with help + |

» Existing Labels

Figure 8-40. Specifying display attributes
12. Set Value Required field to Yes and Number of Radio Columns to 2, as shown in Figure 8-41.
Click Next.

€ || cancel Next >

Page: 210 - Manage Tickets
Item Name: P210_PUBLIC_FLAG
Display As: Radio Group
ValueRequired | Yes +
Display Orientation Vertical

* Number of Radio Columns | 2

Page Action when Value Changed | None (Defaulty

Figure 8-41. Marking the value as required

13. Set Display Null Value to No, and enter STATIC:Y,N for List of Values Query, as shown

in Figure 8-42 . Click Next.

229

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

Next >

s, Either construct a SQL statement with the number of columns required by the item

r use the STATIC syntax. See the List Of

Application/Page: 123/210

Item Name: P210 PUBLIC_FLAG
Display As: Radio Group
Named LOV ~
Display Null Value | No 4
Cascading LOV Parent Itemjs) ~

* List of Values GQuery
STATIC:Y,N

Creata or edit static List of Values Create Dynamic List of Values

» List of Values Examples

Figure 8-42. The LOV for the Public Flag

When you add a column to a form that relates to a database column in the table on which the form operates, a
few settings have to be changed. Source Used and Source Type work together to identify how each item gets its value

14. Set Source Type to Database Column, which in turn sets Source Used to Always,

replacing any existing value in session state. Ensure that Database Column Name is
PUBLIC_FLAG, enter N for Default (as shown in Figure 8-43), and click Create Item.

| £ || Cancel |

Identify the source of the item. If the item source is null the default value will be used

Page:

Item Name:
Display As:
Source Used
* Source Type

Database Column Name

Format Mask

Default:

210 - Manage Tickets
P210_PUBLIC_FLAG
Radio Group
Always, replacing any existing value in session state *

Database Column

PUBLIC_FLAG

N

Item Default Type

<)

Static Text with Session State Substitutions =

Figure 8-43. Specifying a database column and a default value

230

CHAPTER 8 = PROGRAMMATIC ELEMENTS

15. Dragand drop P210_PUBLIC_FLAG in the Page Rendering tree so it’s under
P210_STATUS_ID, similar to Figure 8-44. This is strictly for ease of reading and usability.

= Body (3)
=l [] Manage Tickets

B ltems

- g3 P210_TICKET_ID

- g3 P210_SUBJECT

B do P210_DAYS_OPEN

P210_DESGCR

g2 P210_ASSIGNED TO
g= P210_CREATED_ON
d= P210_CREATED_BY
=
=

F210_CLOSED_ON
F210_STATUS ID

F210_PUBLIC_FLAG

g2 P210_TICKET_ID_MEXT
g= P210_TICKET_ID_PREV
- g2 P210_TICKET_ID_GOUNT

£

Figure 8-44. Layout modification for easier usability

Now that you have a PUBLIC_FLAG column in your data model and the ability to control it through the Tickets form,
you can create the dynamic SQL report on page 1 to display tickets with a Public option for unauthenticated users:

1. EditPage 1 in your application.

2. Create a new region by clicking the Create button and selecting Region on this page, as
indicated in Figure 8-45.

m Utilities w Create v

New page

o
Page control on this page
Shared component
Mew page as a copy
Bug
To Do

Comment

Figure 8-45. Creating a region for the SQL to generate your report

3. Select Report, and click Next.
4. Select Classic Report, and click Next.

5. Enter Current Open Issues for Title, as shown in Figure 8-46. Click Next.

231

CHAPTER 8 ' PROGRAMMATIC ELEMENTS

€ || cancel Next)»

Page: 1-Home
Region Source Type: SQL Query
* Title Current Open Issues
Region Template Reports Region
Parent Region - Select a Parent -
Display Point Page Template Body (3) : @
[Body] [Pos.1] [Pos.2] [Pes.3] [Pos.4] [Pos.5]

* Sequence | 30

» Top Region Templates

Figure 8-46. Region title and display point

6. Enter the following SQL into the Region Source. Click the Create Region button when
you're finished to accept the defaults for all of the remaining settings:

DECLARE
1 sql VARCHAR2(500);
BEGIN

1sql :=1sql || q"!

SELECT
subject,
created_on,
assigned_to

FROM
tickets t,
status_lookup sl
WHERE

t.status_id = sl.status_id

AND sl.status = 'OPEN'
[
IF :APP_USER = 'nobody' THEN
1sql :=15sql || q'! AND public flag = 'Y' I';
END IF;

RETURN 1_sql;
END;

To see the results of this report fully, you need to set a few tickets with the new PUBLIC setting. Navigate to the
ticket summary screen as a logged-in user, and change a few OPEN tickets to have the PUBLIC option set to Yes. When
you navigate to the home screen as a logged-in user, a full list of open tickets should appear, as shown in Figure 8-47.
After logging out, you see only the tickets that have been identified as PUBLIC.

232

APEX Issue Tracker

Welcome to the APEX Issue Tracking System, ADMIN

You have 0 Open lickets.
Selectan option from the list

Current Open Issues

Subject Created On
Funny smell coming from PC 15-NOV-2012
Accidentally deleted G2.ppt 14-NOV-2012
Smartphone will not sync with Cutlook 12-NOV-2012
Network drive not being mapped 20-NOV-2012
Need to install SP2 21-NOV-2012
Mouse is not working 09-NOV-2012
Need more memory 23-NOV-2012
VPN Client Install Issues 10-NOV-2012
I'think | have a virus 17-NOV-2012
Cannot log into E-Mail 25-NOV-2012
BSOD after rebooting 18-NOV-2012
Speakers are too soft 08-NOV-2012

Assigned To
KAREN
MARTIN
SCOTT
KAREN
KAREN
KAREN
DouG
DOUG
MARTIN
SCOTT
DOUG
scoTT

1-12

Figure 8-47. Resulting report generated from dynamic SQL

CHAPTER 8

PROGRAMMATIC ELEMENTS

Note The SQL statement uses a quoting syntax that you may not be familiar with. Oracle Database 10g introduced
a quoting mechanism for string literals that allows you to define your own string delimiters, removing the need to double
up single quotes in strings. Any character can be used as a delimiter, including bracket combinations () {} [] <>.The
basic syntax is q'X string X' where X is any single character. The q' X opens the literal string, and the X" closes the
literal string. You can find more details on the literal syntax in the Oracle Database SQL Language Reference.

Summary

As with any programming language or framework, learning the basics is the first step. This chapter touched on a lot of
points that could be considered tips of icebergs. Each section has capabilities to reach into a vast set of technologies,
with the Oracle database being primary among them. The intention here is demonstrate how the APEX framework
works through the example application and to provide a starting point for additional detail discovery.

233

CHAPTER 9

Security

The subject of security has varying degrees of implementation; there’s never a black-and-white answer. The question
of how much security is needed is followed up by additional questions regarding the value of what is being protected
and the risks, repercussions, and likelihood of it being sought after. For every security measure, there will always be
someone trying to circumvent it. This chapter reviews the basic security features and an approach to securing the Help
Desk application. The concepts reviewed here apply to all APEX applications and are specific to the APEX framework.

User Maintenance Navigation

In the Help Desk application, you have the requirement to allow users to be maintained in the application through
the web interface. Let’s add a section to the application that allows for the maintenance of user accounts and modify the
tab structure to navigate to the newly created form. This time, you don’t use the Create Page Wizard to create the tabs,
but instead create them from scratch in the Shared Components section so you may gain a better understanding of
how the tab hierarchy works.

First create a blank page that will be the landing page for your new tab (tabs require a page to reference):

1. From the Application Builder home page, while editing the Help Desk application, click
the Create Page button.

2. Select the option for Blank Page, and click Next.
3. SetPage Number to 600, and click Next.

4. Enter Users for the Name field and set the Breadcrumb selection to Breadcrumb. When
the page refreshes, ensure that Entry Name is Users, and click Next.

5. Select Do Not Use Tabs for the Tab Options radio group. Click Next.

6. Click Finish to complete the creation of the page. The completed page should be empty,
as shown in Figure 9-1.

Help Desk Walcome: ADMIN Logout

Users

Figure 9-1. Viewing the newly created empty page with its single breadcrumb entry

235

CHAPTER 9 © SECURITY

Although you've created the page, unbeknownst to you, the wizard has made an inaccurate and inappropriate
choice for the page template. Instead of using the default for the theme you're using, it has chosen a template
specifically. You need to change it so that the page uses the default template for the theme:

7. Edit Page 600.

8. Edit the page attributes by double-clicking Page Name at the root of the Page Rendering tree.

9. Inthe Display Attributes section, set Page Template to Use Theme Default.
10. Click Apply Changes.

Now that you have a Users page, you need to make a modification to the navigation tabs. APEX supports one- and
two-level tab navigation as part of the Shared Components. When the application was created, the option chosen was
one-level tab navigation.

However, the design you want has two levels of tabbed navigation. The first level will show links on the right side,
above the current tab bar. These will be the parent tabs and will break the system into two functional sections: Admin
and Issue Tracker.

The second level will provide navigation in each of the functional sections. By breaking the application into
separate sections, later you can easily dictate who can view and use which section. But let’s not get ahead of ourselves.
To implement two-level tab navigation, you need to modify the default page template for the application and

then modify the tab navigation structure.

Note Tab maintenance in APEX can be confusing. The easiest change is to go from some level of tabs to no tabs, or
from no tabs to one or two levels. This exercise walks through the steps involved with converting the existing one-level
tab to a two-level tab configuration to demonstrate a complex configuration change.

Here’s the process to follow to implement two levels of tabbed navigation. First you need to alter the default page
template that your application uses. If you don'’t do this, then even if you implement parent and standard tabs, the
template won’t be set up to show them:

1. Navigate to the Shared Components area of your application.
2. Inthe User Interface section, click Themes.

3. Change the report to List View by clicking the corresponding display icon, as shown in
Figure 9-2.

Themes Reports History

Q- Go - Actions Reset Switch Theme Create)
Number[E] Name User Interface Is Current Page Templates Region Templates Button Templat List Templat
21 L pegiaop v 15 30 7 20

1

]

Figure 9-2. Selecting List View for the theme report

236

CHAPTER 9 © SECURITY

4. Click the Name of the current theme, as indicated by the check mark in the Is Current column.

5. Inthe Component Defaults section, set Page to Two Level Tabs - Right Sidebar
(Optional / Table-Based), and click Apply Changes.

Now that you've changed the template to allow for your new tabs, let’s create them:
6. Navigate back to the Shared Components page.
7. Inthe Navigation section, click Tabs.
8. Click the Manage Tabs subtab shown in Figure 9-3.

Tabs | IManage Tabs Edit Standard Tabs Edit Parent Tabs Conditional Display Utilization History

Manage Tabs Manage Tabs

Figure 9-3. Clicking the Manage Tabs subtab

Currently the application is set up with only standard tabs; they're listed in Figure 9-4. If you add a parent tab,
all the current tabs will be altered so they're subtabs to the parent tab you create. To take advantage of this, you first
create the Issue Tracker parent tab:

Add
A

v Tickets Analysis Calendar Chart Add |Add New Parent Tab

Figure 9-4. Adding parent tabs using the Add link

9. Toadd a parent tab, click the Add link in the upper-right corner, as indicated in Figure 9-4.
10. Enter Issue Tracker for Parent Tab Label, and click Next.
11. Enter 1 for Page, and click Next.
12. Click Create Parent Tab.

You now have a parent tab, and the preexisting standard tabs have been assigned as subtabs. Next create another
parent tab for the Admin section:

13. Add another parent tab by clicking the Add link, just as before.

14. Enter Admin for Parent Tab Label, and click Next.

15. Enter 600 for Page, and click Next.

16. Setthe sequence to 20, so this tab will appear after the Issue Tracker tab, and click Create

Parent Tab.

237

CHAPTER 9 © SECURITY
17. Click the new Admin tab in the display. The display changes and shows you that there are
currently no standard tabs assigned to the Admin tab.

18. Click the Add link in the lower-left corner to add a new standard tab, as shown in Figure 9-5.

lssue Tracker ra Add

."\%I:I

Add New Standard Tab

Figure 9-5. Adding a standard tab for the new Admin parent tab

19. Enter Users for Tab Label, and click Next.

20. Enter 600 for Tab Current for Page, and click Next.

21. Leave the sequence value as the default. Click Next.

22. Youdon't need a condition at this time, so leave the default condition type. Click Next.
23. Click Create Tab.

You now have a Users standard tab as a subtab to your Admin parent tab. When the user clicks a tab, it takes them to
the page indicated when you created the tab, but a tab may be active for other pages in the application, too. Next let’s set
the Users tab to be active even when you're on page 610. It's OK that you haven't created page 610 yet—you will shortly:

24, Edit the Users tab by clicking the Edit icon next to it. The icon is shown in Figure 9-6.

Issue Tracker Fa Add

6 Add

EditUsers Standard Tab. Seguence: 10

Figure 9-6. Editing the Users standard tab

25. Asshown in Figure 9-7, enter 610 in the Tab Also Current for Pages field.

Current For Pages
* Tab Page
600 A~

Tab Also Current for Pages
610|

Figure 9-7. Setting the Tab Also Current for Pages value for the Users standard tab

26. Scroll to the top of the page, and click Apply Changes.

238

CHAPTER 9 © SECURITY

Running the application now shows the results in Figure 9-8 for the Issue Tracker tab and Figure 9-9 for the
Admin tab. The page that is currently active changes the highlight applied to the different tab elements. The parent tab
location is dependent on the template used. In the template shown here, the parent tabs are located at upper right.
The standard tabs in this template are the same as they are for the one-level tab layout.

Parent Tabs

Standard Tabs /_H
A

\ CEUTR - Admin |

ﬁ Tickets Analysis Calendar Chart

Home

Figure 9-8. Selecting the Issue Tracker parent tab shows its five standard tabs

Users

| lssue Tracker nﬂn

Figure 9-9. Selecting the Admin parent tab shows the Users standard tab

You now have a navigational framework that clearly distinguishes the items needed to administer the application.
This design is extensible. As the application grows with time, additional features requiring administration could be
added to this navigational structure.

User Maintenance Data Entry

As part of the Help Desk design, you should be able to maintain the users from the application. To do this, you need

to implement some new database objects by locating, uploading, and running the script ch9_security_objects.sql.

Refer to Chapter 4 if you need step-by-step instructions. You should see 13 rows, all of which complete successfully.
Let’s walk through briefly what this script does for you:

e Lines 1-16: Create a function called hash_password that encodes any string passed to it.
e Lines 18-24: Create the USERS table that will hold the user records.
e Lines 26-27: Create the USER_SEQ sequence that will be used as the primary key for the USERS table.

e Lines 29-37: Create a Before Insert trigger on the USERS table that automatically assigns the
next sequence as the primary key, converts the username to uppercase, and calls the
hash_password function to encrypt the user’s password.

e Lines 39-50: Create a Before Update trigger that converts the username to uppercase and
hashes the user’s password if it has changed.

e Lines 52-87: Create the authenticate_user function that validates whether the passed
username and password are valid compared to what exists in the USERS table.

e Lines 90-103: Create six entries in the USERS table, all with the password apress.

239

CHAPTER 9 © SECURITY

Now that you have your new database objects, you can continue to implement the security model:
1. Edit Page 600 of the application.
Create a new region by clicking the Create button and selecting Region on this page.

Select Form, and click Next.

> L n

Select Form on Table with Report, and click Next.

Because the report is actually quite small and contains very few columns, it’s probably overkill to create it as an
interactive report, so stick to the Classic report in this instance:

5. Set Implementation to Classic.

6. Enter Users for both Page Name and Region Title, and set Region Template to Reports
Region. The settings look like those in Figure 9-10.

Cancel Next >

The Report page is used to select the rows to be edited. It also includes a button to create a new row. If the page you specify does not exist, the page will be created.
Implementation Classic
* Page Number | 600
* Page Name | Users

* Region Title | Users

* Region Template | Reports Regien

Report Template template: 21. Standard
Pagination Size 15

Breadcrumb - do not add breadcrumb region to page - *

Figure 9-10. Report page setup

7. Click Next.

8. Set Table/View Owner to your schema name, and set the Table/View Name to Users
(table), as shown in Figure 9-11.

Next >

specify the row to be updated. The secon.

* Table/ View Owner [APRESS

* Table/ View Name [USERS (table) :)

Figure 9-11. Setting the owner and table names

240

CHAPTER 9 © SECURITY

9. Click Next.

10. Select USER_ID and USER_NAME as the columns to be displayed in the report. Remove the
PASSWORD column using the shuttle buttons, and then click Next.

11. Select any Edit link image, and click Next.

12. Enter 610 for Page Number and Manage Users for Page Name and Region Title, as shown
in Figure 9-12. Click Next.

£ || cancel Next >

Specify page and region information for the Form Page. The Form Page is used to insert, update, and delete rows from the selected table. If the page you specify does not exist,
the page will be created

Owner: APRESS
Table Name: USERS
*PageNumber | 610
* Page Name | Manage Users

*Region Title Manage Users

* Region Template | Form Region

Figure 9-12. Defining the name of the Manage Users form

13. Set Primary Key Type to Select Primary Key Column(s), and, when the page refreshes,
select USER_ID for Primary Key Column 1. Click Next.

14. Select Existing Trigger for Primary Key Source, and click Next.

15. Select USER_NAME and PASSWORD as the columns to be editable on the form, as shown in
Figure 9-13, and click Next.

£ || cancel Next >

Select the columns to include in the form page.
Page: 610
Owner: APRESS

Table Nams: USERS

* Select Column(s) {i}9) [USER_NAME (varchar2)
® PASSWORD (Varchar2)

R o
(aLEl==]

Figure 9-13. Select USER_NAME and PASSWORD as fields to be seen in the form

241

CHAPTER 9 © SECURITY

16. Set Insert, Update, and Delete all to Yes, and click Next.
17. Click Create.

At the completion of these steps, the Help Desk application has some additional objects. The region on page
600 is the report of the current users. Also notice the new page that allows editing of the data values, including all the
processes to do the corresponding database transactions. However, you still need to do a few things to page 610 in
order for it to display the tabs and breadcrumbs properly:

18. Edit Page 610 of the application.
19. Edit the page attributes by double-clicking the name of the page in the Page Rendering tree.

20. Inthe Display Attributes region, set Standard Tab Set to T_ADMIN (Users), as shown in
Figure 9-14, and click Apply Changes. This indicates that page 610 uses the ADMIN tab set
when rendering the page.

Display Attributes ~
User Interface Desktop
Page Template Use Theme Default
Standard Tab Set T_ADMIN (Users)
Title Manage Users
Cursor Focus First item on page

IMedia Type

Figure 9-14. Setting the page tab set

Note This is a different setting than the tab setting that identifies page 610 as being current. If a tab set appears
on the page but without a tab highlighted as active, it's because the page isn’t identified as current in the tab settings.
Conversely, if the page is listed as active in the tab settings, but the page doesn’t render any tabs, no tabs are displayed.

Page 610 doesn’t yet have a breadcrumb entry associated with it. You can quickly add one manually using the
following steps:

21. Edit Page 600.

22. Inthe Shared Components region on the page, edit the breadcrumb by expanding the
Breadcrumbs node in the tree and double-clicking Breadcrumb: (No corresponding
region), as shown in Figure 9-15.

242

23.

24,
25.
26.

27.
28.

CHAPTER 9

Shared Components 5

& [Parent Tabs
- g List of Values
Bl e»a Breadcrumbs
Breadcrumb: (Mo corresponding region)
- 8= Listd
3] ,@ Templates
- Security

Figure 9-15. Breadcrumbs are shown as a shared component on the Page Edit screen

On the filter applied to the report at the top of the page, select the Breadcrumb named
Breadcrumb (if it hasn’t already been selected), clear any entry from Page, and click Set.
Doing so shows all the breadcrumbs for the entire application.

Click the Create Breadcrumb Entry button.
In the Breadcrumb section, enter 610 for the Page the new entry will be associated with.

In the Entry section, set Parent Entry to Users (Page 600), and enter Manage Users for
Short Name.

In the Target section, set Page to 610.

Click Create Breadcrumb Entry. The settings are shown in Figure 9-16.

Breadcrumb

Breadcrumb Breadcrumb ¢
*Page | 610 ~

[600]
Entry

Sequence | 10
Parent Entry Users (Page 600)
* Short Name | Manage Users

Long Mame

Target

Target is a Page in this Application *
Fage | 610 ~

reset pagination for this page

Figure 9-16. Breadcrumb settings for page 610 as a child of page 600

SECURITY

243

CHAPTER 9 © SECURITY

When you're finished, page 610 has a Shared Components breadcrumb entry just like page 600. Running the
application displays shows a breadcrumb entry for the Users report page and the Manage Users page, as shown
in Figure 9-17.

Users Manage Users

Figure 9-17. Showing the breadcrumb entry for the Manage Users page

Note The breadcrumb entry label has (No corresponding region) as part of the name because there is no breadcrumb
region on the current page. So why does it appear when the application is run? In Chapter 5, you moved the breadcrumb region
to the application’s Global Page, so it shows up on every page rendered.

Finally, you need to change the item type of P610_PASSWORD to Password, so it accepts a user’s input but
displays asterisk (*) characters as the password is typed. This item type is designed not to retrieve data when a record
is edited, despite being bound to a database column. Also, the item type doesn’t save any value in session state,
meaning it doesn’t remember the value entered after the page processing is complete. This is a security feature to
prevent data identified as a password from being retrieved inappropriately. Here are the steps:

29. EditPage 610.
30. Edit the item P610_PASSWORD.
31. SetDisplay As to Password, as shown in Figure 9-18.

Identification ~

Page: 610 Manage Users
*Name | P610_PASSWORD

Display As Password
Text , Number , Date , Textarea , Select List , Radic , Popup List of Values , Checkbox |, Display Only , Hidden

Figure 9-18. Setting the P610_PASSWORD element to a password field

Although you want a password to be required when creating a new account, if the admin user doesn’t enter a
password while editing an existing user, you want the system to keep the current password. Because of this, you need
to set the Value Required attribute of the password field to NO and instead implement a validation that only fires
when you're creating a new user:

32. Inthe Settings section of P610_PASSWORD, set the Value Required attribute to NO, and
then click Apply Changes.

33. While editing Page 610, right-click P610 PASSWORD, and select Create Validation.

34. Set Validation Name to P610_PASSWORD Is Not Null, and click Next.
35. Select Not Null as Validation Type, and click Next.

244

CHAPTER 9 © SECURITY

36. EnterA password must be specified. for Error Message, and click Next.

37. Set When Button Pressed to CREATE (Create). Click the Create Validation button when
you're finished.

This completes the navigation and UI part of the security scheme you're implementing. With the navigation and
maintenance in place, you can now implement the authentication scheme that will use the information.

Authentication

The key step in making a secure application is to understand who the accessing user is. APEX refers to this as
authentication. Authentication answers the question, “Who are you?” The APEX tool provides a series of predefined
authentication mechanisms, including a built-in authentication framework and an extensible custom framework.

At design time, it’s easy to switch between authentication methods by setting the active scheme. There can be only one
active authentication scheme at a time for an application. The following are the major types of authentication schemes:

e Application Express Accounts: Users are managed in the APEX workspace and are maintained
just like workspace developer accounts.

e LDAP Directory: The user is an existing LDAP-compliant server such as Active Directory or
Oracle Internet Directory.

e Oracle Application Server Single Sign On: Authentication can pass between APEX and an
existing Oracle SSO server. Logging into the SSO server once passes the same credentials to all
APEX applications.

e Database Accounts: Database usernames and passwords determine authentication. Don’t
confuse this with data access in an APEX application.

e HTTP Header Variable: This approach supports the use of HTTP header variables to identify a
user and to create an Application Express user session.

e Custom: Logic is determined by the developer. An example of usage is for Internet-facing
applications where self-registration may be desired. Another example is when more than one
authentication source is used simultaneously, such as using two LDAP servers.

e Open Door: Developer testing simulates logging in as different individuals. This isn’t intended
to be used as a public authentication scheme.

e No Authentication: This option is intended to allow all parts of the application to be reachable
without needing a user to log in.

Each application has its own set of authentication schemes managed as part of the Shared Components of
the application. Authentication schemes can be copied between applications when needed. This ability to copy
is especially useful when a custom authentication scheme has been developed and is desired in more than one
application. The authentication schemes also utilize the APEX subscription framework to allow a master copy to
be applied to subscribers inside of a single workspace.

Custom Authentication Schemes

In the previous section, the script that was imported included definitions for tables, triggers, and functions. You use
those elements as part of your custom authentication scheme. The key component of the authentication scheme

is a function that compares the given username and password to the stored values in the USERS table. If there is a
match, then the user is authenticated. You can review the database objects and PL/SQL function code from the SQL
Workshop for more details on how this is implemented.

245

CHAPTER 9 © SECURITY

Note Although the USERS table contains a field named PASSWORD, it’s not the actual password value; it’s an encrypted
hash of the password. Passwords should never be stored as plain text.

Here’s the process to follow to create a custom authentication scheme based on the database objects just
mentioned:

1. Navigate to the Shared Components of the application.

2. Inthe Security region, click Authentication Schemes as shown in Figure 9-19.

Security

—= f] Authentication Schemes

Authorization Schemes
(& Session State Protection

@ Security Attributes

Figure 9-19. Navigating to the Authentication Schemes shared component

3. Click the Create button at the upper right on the Authentication Schemes screen.
4. Select Based on a Pre-Configured Scheme from the Gallery, and click Next.

5. Enter Custom Authentication Scheme for Name, and then select Custom for Scheme
T'ype. The page refreshes and displays different entry options based on the scheme type
selected.

6. Inthe Settings section, enter authenticate_user for Authentication Function Name,
as shown in Figure 9-20. You don’t need to fill out any of the other items in this section.

Settings A

Sentry Function Name

Invalid Session Procedure Name
Authentication Function Name | authenticate_user

Post Logout Procedure Name

Enable Legacy Authentication Attributes No

Figure 9-20. Setting the Authentication Function Name

7. Click Create Authentication Scheme.

246

CHAPTER 9 © SECURITY

Note No parameters are used here, nor is a PL/SQL semicolon. This is part of the definition of how APEX handles
custom authentication functions. The authenticate_user function that was created earlier conforms to the expected
signature: a function returning a BOOLEAN value with two parameters p_username varchar2(255) and p_password
varchar2(255).

By default, when you create a new authentication scheme, it’s automatically set to be the active scheme. Now you
must use the usernames and passwords that exist in the USERS table to log in to your application.

Run the application, and if it shows that you're logged in, log out. You can sign on as any of the following users:
Scott, Doug, Martin, Karen, Patrick, or Tim; all passwords are apress in lowercase.

Conditional Security

Many aspects of APEX are conditional. One pair of conditions is particularly applicable to the authentication status:
User Is the Public User and User Is Authenticated. These conditions can help you limit objects in APEX to be available
either to public users (those who haven’t logged in) or to authenticated users (those who have logged in).

By applying security rules to the Help Desk application, you can improve usability by restricting the display
of tabs that aren’t available to the public. This avoids confusion and improves the overall user experience when
accessing the application. Let’s walk through the creation of this condition:

1. EditPage 1 of the application.

2. Inthe Shared Components region, edit the Admin tab by expanding the Parent Tabs
node and then double-clicking Admin. Figure 9-21 shows the location of the Admin tab in
the navigation tree.

Shared Components L

&1 [Parent Tabs
[Tab Set: TS1
© -~ Issue Tracker
e Admin
= Tab Serf TS1
- Home
- Tickets

L. Analueic

Figure 9-21. Viewing the tab sets in the Shared components region of the page editor

3. Inthe Conditional Tab Display region, set Tab Display Condition to User is
Authenticated (not public), and click Apply Changes. Figure 9-22 shows the expected
value of the condition.

247

CHAPTER 9 © SECURITY

Conditional Tab Display ~

Tab Display Gondition
User is Authenticated (not publich

[PL/SQL] [item / column=value] [item / column not null] [item / column null] [request=e1] [page in] [page notin] [exists] [never] [none]

Figure 9-22. Setting the Tab Display Condition

4. Repeat steps 2 and 3 for the Tickets, Analysis, Calendar, and Chart tabs. Note: for
standard Tabs, the region is simply called Conditions.

Run the application now, and click the Logout link. The Admin parent tab as well as the remaining standard tabs
should disappear, with the exception of the Home tab. Logging in again should restore the display of the tabs as they
were previously seen.

Access Control

APEX includes a built-in feature for creating an access-control framework with three roles: Administrator, Edit, and
View. The wizard is designed to create data structures to store the roles, pages to edit the assignments, and authorization
schemes to be used throughout an application. This wizard makes the job of creating basic security capability very easy
in an application. The summary of the objects created can be seen in Figure 9-24 as the last step in the wizard.

There are, however, downsides to using the built-in access-control mechanism. If you require more granular
access control than the Administrator, Edit, and View roles provide, then you're likely going to want to create your
own access-control mechanisms from scratch. For the Help Desk application, these roles will suffice. Here’s how to
implement access control in the Help Desk application:

1. Run the application, and click Create on the Developer toolbar.

2. Select New Page, and click Next.

3. Select Access Control, and click Next.

4. Enter 620 for Administration Page Number, and click Next.

5. Select Use an existing tab set and create a new tab within the existing tab set, allow the

page to refresh, and then set Tab Set to T_ADMIN (Users), as shown in Figure 9-23.

Administration Page: 620

Tab Options: O Do not use tabs
® usean existing tab set and create a new tab within the existing tab set.

O usean existing tab set and reuse an existing tab within that tab set

* Tab Set T_ADMIN (Users, Access Control) ¥ |

"
New Tab Label | Access Control

? Tabs

Figure 9-23. Assign page 620 to a new tab in the Admin tab set

248

6.
7.

CHAPTER 9 © SECURITY

Enter Access Control for New Tab Label, and click Next.

Click Create, as shown in Figure 9-24.

< Cancel

You have requested
Application

Page

Page Name

Page Title

Tab Set

Tab Label

Create Table

Create Table

Create Authorization Scheme
Create Authorization Scheme

Create Authorization Scheme

xge with the following attributes.

123

620

Access Control Administration Page
Access Control Administration Page
T51

Access Control

APEX_ACCESS SETUP
APEX_ACCESS CONTROL

access control - administrator
access control - edit

access control - view

ase confirm your selections.

Figure 9-24. Viewing the object summary as part of the Access Control wizard

With the completion of the wizard, all the objects have been created and are available for use. Before you enable
the security utility, you need to add some users to allow you to use the admin functions. Running the application now,
you may notice that the username is simply an open text field. You should create a list of values (LOV) as a shared
component that contains all the users for whom you want to control access. Because the access-control page is now
part of the application, you can alter it as needed. To increase the quality of the data entered, update the user field to
be a select list:

8.
9.
10.
11.
12.

Edit Page 620.
Edit the Report Attributes for the Access Control List report.
Edit the ADMIN_USERNAME column.

In the Column Attributes region, set Display As to Select List (Query Based LOV).

In the List of Values region, enter the following SQL Statement in the List of Values
Definition, and click Apply Changes:

SELECT user_name d, user_name r
FROM users

When you run page 620, notice that no breadcrumb has been created for the page. You can do this as follows:

13.

14.
15.
16.

While editing page 620, in the Shared Components region, right-click the Breadcrumbs
node and select Edit All from the context menu.

In the Breadcrumb select list, choose Breadcrumb, and click the Set button.
Click the Create Breadcrumb Entry button.

In the Breadcrumb region, enter 620 for Page.

249

CHAPTER 9 © SECURITY

17. Inthe Entryregion, enter Access Control for Short Name.
18. Inthe Target region, enter 620 for Page.
19. Scroll to the top of the page, and click Create Breadcrumb Entry.
Next, you need to associate a privilege with each of the existing users via the access-control pages:
20. Run the application, and log in with the user SCOTT.

21. Navigate to the Access Control screen by clicking the Admin parent tab and then the
Access Control subtab.

22. Inthe Access Control List section, click Add User.

23. Select Scott for Username, set Privilege to Administrator, and click Add User.
24. Select Doug for Username, set Privilege to Edit, and click Add User.

25. Select Patrick for Username, set Privilege to Edit, and click Add User.

26. Enter Martin for Username, set Privilege to View, and click Apply Changes.

Your results should look similar to those in Figure 9-25. Every time a new user is added, the listing in the report
updates. You can now use these users to test the application.

Access Control List
Delete Apply Changes

Identify usernames which correspond to this application's authentication scheme.
Find Co

Username & Privilege Last Changed By Date

DOUG : Edit 3 scolt 26 seconds ago \
MARTIN # View o scott 26 seconds ago
PATRICK = Edit : scoftt 26 seconds ago

SCOTT Administrator % scott 26 seconds ago

1-4
Add User

Figure 9-25. The Access Control List with usernames and privileges

One of the features of the access-control utility is the ability to enable or disable the enforcement of the utility
itself. Running page 620 displays the header shown in Figure 9-26. By default, the access-control utility is set to Full
Access. To enable the access-control features, set the mode using the following steps:

27. Run Page 620.

28. Set Application Mode to Public read only. Edit and administrative privileges controlled
by access control list.

29. Click the Set Application Mode button shown in Figure 9-26.

250

CHAPTER 9 © SECURITY

Application Administration

| Set Application Mode |

Application Mode () Full access to all, access control list notused
_)Restricted access. Only users defined in the access control list are allowed.
(E) Public read only. Edit and administrative privileges controlled by access control list.
_Administrative access only.

Figure 9-26. The access-control list enabled as public read only

You now have the editing forms in place and all the data set up properly, although the application isn’t yet using
any of the restrictions you've created. You do that in the next section.

Authorization

Whereas authentication answers the question “Who are you?,” authorization works to answer the question “What are
you allowed to do once logged in?” APEX provides shared components of an application called authorization schemes.
These authorization schemes can be applied to components within the application to tell the APEX engine when the
components should be executed or rendered.

When you created the access-control pages, APEX created three authorization schemes for you, one for each
role available in the edit screens: Admin, Edit and View. Figure 9-27 shows the Authorization Schemes shared
component report.

Authorization Schemes Subscription by Component Utilization History

Q- Go ==E Actions v Copy Reset

Name(a| Type Caching Updated

access control - administrator PL/SCL Function Returning Boolean Evaluate for every page view | 17 minutes ago

access control - edit PL/SCL Function Returning Boolean | Evaluate for every page view | 17 minutes ago

PL/SCL Function Returning Boolean | Evaluate for every page view | 17 minutes ago

1-3

Figure 9-27. The authorization schemes created as part of the access-control mechanisms
The last step in this process is to start locking down pages using these authorization schemes. First let’s lock
down the Administrator section of the application so that only a user with ADMIN privileges can use it:
30. Edit Page 620.
31. Edit Page Attributes by double-clicking the page name.

32. Inthe Security region, set Authorization Scheme to access control - administrator, as
shown in Figure 9-28. Click Apply Changes.

251

CHAPTER 9 © SECURITY

Security ~

Authorization Scheme access control - administrator
Authentication Page Requires Authentication =
Deep Linking Application Default *
Page Access Protection Unrestricted
Form Auto Complete On

Browser Cache Application Default *

Duplicate Submission A
Figure 9-28. Setting the authorization scheme at a page level

33. Repeat steps 31 and 32 for pages 600 and 610.

Now that the authorization scheme has been implemented on the administration pages, you can test the security
behavior. Only a user set up with the Administrator role on the access-control page can use the Admin pages 600
through 620.

Log in to the application as the user Scott, and you can navigate all the administration functions. Logging in as
any other user and clicking the Admin parent tab results in the message shown in Figure 9-29.

No privilege for attempted action.
Access denied by Page security check

Technical Info (only visible for developers)

| OK |

Figure 9-29. Error message generated when the authorization scheme returns a denied result

The error message in Figure 9-29 isn’t very friendly. An application should make every effort to avoid the type of
event that would cause a privilege error. In this application, the Admin tab should be removed from the page when it
doesn’t meet the access restrictions. You accomplish this using the same authorization scheme applied to the tab itself:

34. Edit Page 600 in the application.

35. Expand the Parent Tabs node in the Shared Components region, and double-click
Admin as shown in Figure 9-30.

252

CHAPTER 9 © SECURITY

Shared Components 5

&l [Parent Tabs

[Tab Set: TS1

. - Issue Tracker

E Tab Set: T_ADMIN

- Users
.. Aooess Control

- g List of Values

H e»a Breadcrumbs

- 8= Lists

[+ ,@ Templates

@ Security

Figure 9-30. Doub-click the Admin tab to edit its properties

36. Under Authorization, set Authorization Scheme to access control - administrator, and
click Apply Changes.

Now, when running the application, if the user isn’t privileged with administrator access, the tab doesn’t display.
This avoids the event that would cause the user to see the access-denied error message.

You've applied the authorization scheme at the page level and tab level for the administration pages. Next, let’s
remove the ability for a view-only user to create new records by associating the Edit authorization scheme with the
button required to create tickets:

37. Edit Page 200 of the application.

38. Edit the Create button by double-clicking its name.

39. Inthe Security region, shown in Figure 9-31, set Authorization Scheme to access
control - edit, and click Apply Changes.

Security

Authorization Scheme

| access control - edit

Figure 9-31. Security setting for the buttons

40. Repeat steps 38 and 39 for the Manage Multiple Tickets button.

To test this change, log in with the username Martin. This user has been granted view privileges, so the buttons
on page 200 aren’t shown. Does this mean that Martin can'’t create tickets?

Let’s review the steps you applied to the Admin pages. Security was first applied to the page itself, and then
additional security was applied to prevent the access-denied error. In the case of the buttons to create tickets, security
to remove the buttons doesn’t prevent the page from being run directly either from the Application Builder or by
changing the page number in the URL to 210 or 230.

253

CHAPTER 9 © SECURITY

Important Removing or hiding a button, a tab, or another link doesn’t secure the target it was pointing at; it only
helps reduce errors seen by users on components that are already secure.

The design for the Help Desk application has the Manage Multiple Tickets page only available to users with edit
privileges, so the entire page is secured at the edit level. The single-record view of a ticket continues to be visible to all
authenticated users, but without the buttons related to record manipulation:

41. Edit Page 210 of the application.
42. Edit the Create button in the Manage Tickets region by double-clicking its name.

43. Inthe Security region, set Authorization Scheme to access control - edit, and click
Apply Changes.

44, Repeat steps 42 and 43 for the Delete and Save buttons as well as the second Create
button located in the Ticket Details region.

45. Edit Page 220 of the application.
46. Edit the Create button by double-clicking its name.

47. Inthe Security region, set Authorization Scheme to access control - edit, and click
Apply Changes.

48. Repeat steps 46 and 47 for the Delete and Save buttons.
49. Edit Page 230 of the application.
50. Edit the page attributes by double-clicking the page name.

51. Inthe Security region, set Authorization Scheme to access control - edit, and click
Apply Changes.

Review the application now with different users. Notice how the user Martin can still navigate from the Tickets
report to view the details of the ticket, but there are no buttons to modify the records in the database. Even though the
form elements are editable, they aren’t written back to the database without the proper form submission.

Read-Only Items

Normally, users can edit the contents of an item in APEX. There are instances where you want to prohibit them from
doing so, but you don’t want to hide the item entirely. At the conclusion of the previous step, the user Martin doesn’t
have the ability to save edits of the ticket information even though the form allows Martin to change the contents of
the form items.

To assist in preventing changes, each item in APEX has a read-only attribute that you can set programmatically.
The approach is similar to how item conditions are managed. Because the read-only attribute can’t use an
authorization scheme directly, you can use the APEX APTAPEX_UTIL.PUBLIC_CHECK AUTHORIZATION to determine
whether a user has the rights to edit the data. This API takes a parameter of the authorization scheme name and runs
the verification returning a Boolean result that can be used in PL/SQL logic.

Here are the steps to use the read-only attribute and the API just discussed:

1. Navigate to and edit the items indicated in Table 9-1 by double-clicking the item name on
the respective page.

254

CHAPTER 9

Table 9-1. Items That Require the Read-Only Attribute

Page Number Page 210 Page 220

Items to Update P210_SUBJECT P220_DETAILS
P210_DESCR P220_ATTACHMENT
P210_ASSIGNED_TO P220_CREATED_BY

P210_CREATED_BY
P210_CLOSED_ON
P210_STATUS_ID
P210_PUBLIC_FLAG

2. Inthe Read Only section, set Read Only Condition Type to PL/SQL Function Body
Returning a Boolean, as shown in Figure 9-32. Set the value for Expression 1 to the
following:

RETURN NOT APEX_UTIL.PUBLIC CHECK AUTHORIZATION('access control - edit');

SECURITY

Page Item: P210 SUBJECT Iy = (_>

Identification | User Interface | Grid Layout | Labe Seftings | Element | Source | Default | Quick Picks | Conditions | Read Only | Security | Configuration

Read Only

Read Only Condition Type
PL/SOL Function Body Returning a Boclean

[PL/SQL] [tem / column=value] [item / column not null [tem / column null [request=e1] [page in] [page not in] [exists] [never] [always] [none]

Expression 1
RETURN NOT APEX_UTIL.PUBLIC_CHECK_AUTHORIZATION('access control - edit');|

Do not validate code (parse code at runtime only).

Read Only Element Table Cell(s) Attributes

Updated: 7 days ago - ADMIN

Figure 9-32. Using the Next and Previous buttons to navigate between regions on a page

e

Help Text | Comments

Note We recommend that you use the Region Selector buttons in the following steps to edit the read-only setting
shown in Figure 9-32. The settings for the Conditions and Read Only regions are close to each other and contain similar
options. Using the Region Selector buttons at the top of the page editor makes navigation much more efficient and
prevents confusion with the Conditions region. Clicking the > icon to advance to the next item is a shortcut for moving
between successive items on a page. Your changes are saved when you use the arrows to switch items. Figure 9-32

shows the location in the upper-right corner.

255

CHAPTER 9 © SECURITY

When you run the application as Martin, information about a ticket on page 210 shows data without the
confusion of form elements. Authenticating as any other user shows the data in form elements and displays the
corresponding buttons. Results of the read-only view are shown in Figure 9-33; compare them to the form in edit
mode, shown in Figure 9-34.

Manage Tickets
Cancel < >
+# Subject Cannot log into E-Mail Days Open 33
Description User called and cannat log inta his MS Outlook e-mail Account
Assigned To Scott # Created On 25-NOV-2012 Created By Paul

Closed On 25-NOV-2012
Status OPEN

Public Flag N Y
20 of 22

* Help

Figure 9-33. Ticket record in read-only mode

Manage Tickets

Cancel Delete Apply Changes < >

Subject Cannot log into E-Mail Days Open 33

User called and cannet log into his MS Qutlook e-mail Account

Description
4
Assigned To | Scott 3 | * Created On 25-NOV-2012 Created By | Paul
Closed On 25-NOV-2012
Status | OPEN

* Public Flag @N Y

200f 22

* Help

Figure 9-34. Ticket record in edit mode

Data Security

At this point, the majority of the application is relatively secure. What you don’t have is data security applied to
segregate the data between application users. Any authenticated user can see and make changes to any other
user’s records. APEX doesn’t provide a built-in construct for securing data. APEX does support and work well
with other Oracle technologies that secure data, such as Virtual Private Database, Oracle Label Security, and
Transparent Data Encryption.

Although there are a number of ways to deal with data segregation and security, one of the simpler methods is
to use a view to enforce the data available to a user in place of all references to the base table. This method is effective
and works with all versions of the Oracle database. The process works by adding a securing function to the view that
uses the current APEX username, filtering out the data from other users.

256

CHAPTER 9 © SECURITY

To implement this data security, you run a script that creates a new view named TICKET_SECURE_V and then
re-create the other two views, TICKET_ACTIVITY_V and TICKET_V, so they point to the secured view rather than the
TICKETS table directly. Then you make modifications to the other key components of the pages that access ticket data
to also use the new secure views. Here are the steps:

1. Locate, upload, and run the script ch9_data_security_script.sql. Refer to Chapter 4 if
you need step-by-step instructions. You should see three rows in the results report, all of
which complete successfully.

2. Once the script completes, run the application and navigate to the Analysis page. You
should notice that only tickets or ticket details that are assigned to the user you're logged
in as appear.

Next, make changes to the source of several other pages so they reference the new secure objects you just created:
3. Edit Page 200 of the application.
4. Edit the Tickets report by double-clicking it.

5. Locate and open the file ch9_report p200.txt, and copy its contents into Region Source,
replacing everything that is there. Click Apply Changes.

6. Run Page 200, and notice that you can only see the tickets that are assigned to the
current user.

You need to make a similar change on the Manage Multiple Tickets page:
7. Edit Page 230 of the application.
8. Edit the Manage Multiple Tickets report by double-clicking it.

9. Locate and open the file ch9_report_p230.txt, and copy its contents into Region Source,
replacing everything that is there. Click Apply Changes.

10. Run Page 230, and notice that you can only see the tickets that are assigned to the
current user.

Next, modify the Calendar report:
11. Edit Page 400 of the application.
12. Right-click Ticket Activity Calendar, and click Edit Calendar.

13. Inthe Tasks region on the right side of the page, click Convert to SQL Based Calendar.
Figure 9-35 shows the location of the link. Clicking the link generates a confirmation
message and remains on the same page.

257

CHAPTER 9 © SECURITY

| Region Definition

Region Name:

Calendar Attributes

Ticket Activity Calendar

| Cancel || Delete | Apply Changes

Show All | Calendar Display

Display Attributes

Column Link | Day Link | Dragand Drop

Calendar Display

Calendar Template
Easy SQL Table Owner
Easy SQL Table

Date Golumn

Date Format:

Date ltem

End Date Item
Calendar Type Column
Display Type

Display Column
Primary Key Column

Column Format [Insert column value]

#SUBJECT#

Calendar, Alternative 1+
APRESS
TICKETS

CREATED_ON
(®)Date Only () Date and Time
P400_CALENDAR_DATE ~
P400_CALENDAR_END_DATE [~
P400_CALENDAR_TYPE -~

Custom

TICKET_ID

Figure 9-35. Tasks region on the right side of the Calendar Attributes tab

14. Click the Region Definition tab at the top of the page.

Calendar Attributes

Use Galendar Display attributes to
specify atemplate, date columns,
and general calendar formatting.

Calendar Interval attributes define
the interval in which the calendar
displays. Use these attributes to
specify the start of an interval,
which item in the application
holds the date, and the day of the
week on which the calendar
starts. You can also define which
items hold the start date and end
data.

Use Column Link and Day Link to
define links to be placed on a day
or acolumn in the calendar.

Tasks

Convert to SQL Based calendar

&

EConver(to SQL Based calendarg

15. Locate and open the file ch9_report_p400.txt, and copy its contents into Region Source,
replacing everything that is there. Click Apply Changes.

Finally, you should also apply this rule to the chart, because it’s still allowing you to see the status from all records
in the system, which is inaccurate:

16. Edit Page 500 of the application.

17. Edit the chart attributes by right-clicking the chart name and selecting Edit Chart from the
context menu.

18. Edit Series 1 by clicking the Edit icon indicated in Figure 9-36.

Chart Series A

Series Name Query

é Series 1

Figure 9-36. Edit the chart data series by clicking on the edit icon

SELECT '{?7p=8&APP_ID.:200:" || :APP_SESSION || "::::P200_STATUS_ID:' || sl.status_id link, sl.status label, count(*)
value FROM tickets t, status_lookup s| WHERE t.status_id = sl

258

CHAPTER 9 © SECURITY

19. Locate and open the file ch9_report_p500.txt, and copy its contents into the SQL region,
replacing everything that is there. Click Apply Changes.

20. Run Page 500, and notice that the chart only reflects the status of either unassigned tickets
or tickets that are assigned the current user.

This is a huge leap forward in data security, but you're not quite finished. You may have noticed that if you edit
one of the records on page 210, you can use the Next (>) and Previous (<) buttons in the upper-right corner to see
records that belong to other users. Thus, you need to plug this security hole as well:

21. Edit Page 210 of the application.

22. Thelocation of the process Get Next or Previous Primary Key Value is shown in Figure 9-37.
Edit the process by double-clicking its name.

Page Rendering L

El [] Manage Tickets
B Before Header
i B Branches
] Computations
¢ L p210_DAYS_OPEN
i @ Processes

-1 After Header
Computations
E| #h Processes
i i~ Fetch Row from TICKETS
W Gt Mext or Previous Primary K
.. & Regions

{ Before Regions

- Regions
= Body (3)

Bl [] Manage Tickets

B items

© i da P210_TICKET_ID
i §3 P210_SUBJECT
d2 P210 DAYS_OPEN
.. da P210_DESCR
.. 2 P210_ASSIGNED_TO
- 4= P210_CREATED_ON

P e s o

I

i

Figure 9-37. The location of the Get Next or Previous Primary Key Value process

23. Change the value of Table Name to TICKETS_SECURE_V, as shown in Figure 9-38. Click
Apply Changes.

259

CHAPTER 9 © SECURITY

Source: Get Next or Previous Primary Key Value A

* Table Owner | APRESS 3

* Table Name | TICKETS_SECURE_V{ |

MNavigation Order | CREATED_ON
Secondary Navigation Order
* Itern Containing Primary Key Column Value | P210_TICKET_ID A \

* Prim ary Key Column | TICKET_ID

* Item to Contain Next Primary Key Column Value | P210_TICKET_ID_NEXT ~
* Item to Gontain Previous Primary Key Column Value P210_TICKET_ID_PREV A~
Itam Cantaininn Sarnndars Kew Calomn Valna =

Figure 9-38. Update the source for fetching the next record.

Now all of your data is secured based on who is signed on to the system. Or is it?

Session-State Protection

One of the most common ways to compromise a web application is through a form of attack known as URL
tampering. You don’t need to be a programmer or hacker to launch this type of attack—all you need to do is alter
the URL in your browser. APEX introduced the session-state protection feature in release 2.2. When enabled, it adds
a checksum value to the URL. If any portion of the URL is altered, the resulting checksum doesn’t match what is
expected, and the page simply won’t render. Implementing session-state protection is simple and recommended for
any report based on sensitive data.

In the previous exercise, you secured the data from the report pages and a navigation component. However, you
did nothing to protect pages 210 and 220, where the actual changes are made. Thus, if a user were to tamper with
the APEX URL, it would be trivial for them to view and edit other users’ tickets. This is easily visible from the report
on page 200. The end of the URL on the report clearly shows P210_TICKET ID:10, where 10 in this case is the ticket
number. Changing that number in the URL directly will cause APEX to fetch the new record ID, regardless of whether
it’s assigned to the current user.

You can prevent this from happening in a few easy steps using APEX’s session-state protection functionality:

1. Go to the Shared Components of the application.

In the Security region, click Session State Protection.
Click Page.

Click the link for Page 210 - Manage Tickets.

LA

Set Page Access Protection to Arguments Must Have Checksum, set Display Item
Type to Data Entry Items, set Item Session State Protection for P210 TICKET ID to
Checksum Required - Session Level, and click Apply Changes. Figure 9-39 shows the
session-state protection settings for page 210.

260

CHAPTER 9 © SECURITY

Set Page and Item Protection Cancel Apply Changes

Application: 123 - Help Desk
Session State Protection: Enabled
Page: 210
Mame: Manage Tickets

Page Access Protection Arguments Must Have Checksum #

Display ltem Type: (E) Data Entry ltems (_) Display-Only ltems

Item Name Beqgion ¥ Sequence Label Item Session State Protection
F210_TICKET_ID IManage Tickets 10 Ticket |d | Checksum Reguired - Session Level
P210_SUBJECT Manage Tickets 20 Subject Unrestricted =

Figure 9-39. Session-state protection settings for page 210

Now run the Tickets report on page 200 in the application. Hover your mouse over the Edit icon, and examine the
URL. Notice the &cs= portion of the URL. The 8cs= parameter is the checksum that was automatically generated by
APEX. Alter the value for P210_TICKET_ID in the URL, or remove &cs= and everything to the right of it, and try to run
the page. You receive an error message similar to that shown in Figure 9-40.

values (P210_TICKET_ID2 [B731179D15EEBD228A4FFE255B60D587]) did not match the
checksum passed into the show procedure (E6BB248F11481A251C49DD274A52D215).

o The checksum computed on the request, clear cache, argument names, and argument
Note: End users get a different error message.

Contact your application administrator.
Technical Info (only visible for developers)

Figure 9-40. Checksum error message as a result of URL tampering

Summary

In this chapter, you've applied new security to the Help Desk application by utilizing the key features of APEX. You
implemented a new custom authentication scheme to allow control over users who access the sensitive parts of the
application. You also reviewed conditional security with both authenticated and un-authenticated individuals and
added parameters to allow the application to be used by both.

261

CHAPTER 10

Application Bundling and Deploymery

The concept of application bundling and deployment is something developers should consider from the beginning
when designing an application. In the case of APEX, built-in facilities help make the job easier. When it comes to
application deployment, there are various ways to accomplish the same end goal, and no two IT organizations do it
exactly the same. This chapter discusses the tools APEX provides to help you bundle and deploy applications and
how to use them in a very APEX-centric way.

Note Your organization may already have a standardized way to achieve many of the things being introduced in
this chapter. Before implementing any of these methods, check and make sure you’re not reinventing the wheel.

Identifying Application Components

Your APEX application consists of more than just the application export itself. There are underlying database objects,
images, Cascading Style Sheets (CSS), and JavaScripts. And these components may or may not be stored on the same
server as APEX, let alone stored in the APEX metadata repository. In essence, you need to know how to assemble
everything it would take to instantiate your application from scratch. Therefore, it’s important to understand all
the components that make up your application, where they’re stored, and how to bundle them in a way that makes
migration easier.

You can break the various components into roughly four main groups:

e External files: Your application may access files that don’t reside in the APEX repository.
For instance, your company may have a common set of CSS and image files that are used
by several web sites to maintain a standard look and feel.

e Database objects: These include all the tables, views, PL/SQL objects, and any other
database objects used by your application. Most of the time, these reside in your application’s
“parse as” schema.

e APEX-based files: These are files that have been uploaded into the Files section of an
application’s supporting objects. They may include images, CSS, JavaScript, static files,
and so on, and are stored in the APEX repository.

e APEXapplication export: This is the core of the APEX application, containing the pages,
regions, items, validations, and so on.

When it comes time to deploy an application, each of these types of files needs to be treated a bit differently.
The following sections address each file type and how to obtain the most recent version for migration to an alternate
platform. Later, the chapter discusses using the Supporting Object feature of APEX to bundle the appropriate items
into the application export.

263

CHAPTER 10 APPLICATION BUNDLING AND DEPLOYMENT

External Files

As mentioned previously, external files exist outside of the APEX metadata repository and usually outside the Oracle
database. In the majority of cases, these files are placed in a directory structure on the application server that provides
the HTTP services for APEX. Usually they’re placed in a directory under the document root (docroot) of the domain
that is servicing APEX requests. Because they exist outside of APEX, they can’t rightly be included in the supporting
objects of an application, so need to be handled separately from the other file types.

You need to keep careful track of what files your application uses and whether those files have changed during
the development of your application. Another area of concern is whether other applications, APEX or otherwise, use
these same files.

For instance, version 1 of your application may reference a JavaScript file that is stored on the application server.
During the development of version 2 of the application, you may have made changes to that file that need to be moved
from the development server to QA or production. But what if your colleague is working on another application that
uses the same JavaScript file? You must be very careful about what you change, and how you deploy it, so as not to
inadvertently affect other systems.

When migrating these files from a development to a QA or production environment, you likely need to work with
the people who are in charge of maintaining the application-server tier. They probably have a process in place for
planning the migration from one tier to another.

If you're working on your own and are the sole person in charge of the file migration, it’s good to get into the
habit of maintaining a backup copy of the files you're replacing, just in case something goes wrong. You can do this
simply by renaming the file currently in use to include some type of identifier for the version. Including the date in the
filename works well for this. In Linux, the command looks something like this:

mv my_old file.js my old file 2013 02 17 12 37.js

If you're using a source code control system and are tagging the file versions that are moved to production,
you may not need to take this extra step.

The key is making sure you can recover from any issues that may arise from overwriting a file. There’s nothing
worse than bringing a system to its knees with no easy way to get back to the previous state.

Database Objects

It may seem that database objects should be straightforward, considering that they exist in Oracle and the SQL code
for their definition can be re-created relatively easily. And for a brand-new application, this assumption is fairly
accurate.

However, the minute an application goes live, if you need to change the table structure, you can’t simply replace
the underlying tables with new versions. The users have probably entered or manipulated data in the system, and it’s
your job to make sure that when new versions of the system are rolled out, the integrity of the data is maintained.

New Applications

When you're deploying a brand-new application, a couple of tools can help you generate the scripts for the underlying
database objects. The Utilities menu in the APEX SQL Workshop contains a Generate DDL tool, which does exactly
what its name implies. If you run it against your application’s “parse as” schema, it allows you to generate a SQL script
containing the underlying database objects.

As shown in Figure 10-1, the wizard asks which of the available schemas you'd like to use as the basis for the

generated script.

264

CHAPTER 10 APPLICATION BUNDLING AND DEPLOYMENT

[|
i Cancel Next)

Select the da

nema which owns the database objects for which you would like to generate a data definition language {DDL) seript

* Schema | APRESS :)

Figure 10-1. Choosing the schema for which to generate object-definition scripts

The wizard then lets you choose what types of database objects to include in the script (see Figure 10-2). Make
sure you select all the object types that are used by the application. Selecting Check All gives you the option of
generating scripts for all objects in the selected schema. At this point you may also decide whether you wish to show
the generated script inline so you can copy and paste it, or save it as a script file to the APEX script repository.

| (H Cancel | Cenerate DDL |

ct types for which you would like to generate DDL. Clicking Generate DDL generates DDL for the selected object types. To select object names for selected
click Next.

Qutput: @ Display Inline (_) Save As Script File

CheckAll @

Object Type:

™ Function ™ Index ™ Package

™ Procedure @ Sequence ® Synonym

& Table ™ Trigger & View

@ Database Link @ Type o Materialized View

File Character Set Unicode UTF-8

Figure 10-2. Selecting the object types in the Generate DDL Wizard

The next step of the wizard (see Figure 10-3) lists all the objects that match the types you selected in the previous
step. You can be as selective as you like about which objects to include. Your particular application may only use a
subset of the objects within a schema, so you only need to choose those when generating the DDL.

| L4 H Cancel | Generate DDL

Select the object(s) for which you would like to generate DDL.

Qutput: @ Display Inline (_) Save As Script File

File Character Set Unicode UTF-8

Check All
Function AUTHENTICATE_USER
F_LOGIN
GET_STATUS
HASH_PASSWORD
Index APEX_ACCESS_CONTROL_FK_IDK

ADEV AFMFESE AAMTDA DK

Figure 10-3. Choosing the specific objects in the Generate DDL Wizard

265

CHAPTER 10 APPLICATION BUNDLING AND DEPLOYMENT

Note If you find yourself in a situation where several applications are sharing the same underlying schema, you
may want to apply a naming convention to the database objects so you know which objects relate to which application.
A common database object naming convention is to introduce a three-letter prefix to the object names. For instance, the
table USERS for the Help Desk application would become HDA_USERS. Again, check with your company to see if it already
has an object-naming convention.

If you've chosen to save the script to the APEX script repository, the next step allows you to enter the name of the
file to be created and a description, as shown in Figure 10-4.

Enter the name and description of the seript you want created. The SQL script will be created in the Seript Repository
* Script Name | database_objects.sqgl

Description | Help Desk Database Objects Script

Figure 10-4. Naming the script being created by the Generate DDL Wizard

At this point the script is generated, containing all the chosen objects. The generation engine does a good job of
creating objects that are dependent on other objects in the correct order so that no errors will occur when the script is
run. However, it’s always a good idea to test these scripts to make sure everything runs smoothly.

Oracle’s SQL Developer product also has a tool that lets you generate DDL for a selected schema. Figure 10-5
shows the splash screen of the SQL Developer Database Export tool.

266

CHAPTER 10 * APPLICATION BUNDLING AND DEPLOYMENT

800 Export Wizard - Step 1 of 5

Source/Destination

/‘TK Source/Destination

|
)-r\ Types to Export Connection: |a apress VM4.2 v|
T [#] Export DDL
I Pretty Print | | Show Schema []Grants [| Add BYTE keyword

[+] Terminator [«] Add Forceto Views [|Drops | |Cascade Drops
[] starage [] Dependents

[] Export Data

Eormat: [insert |

Line Terminator: |erwironment default |v|

Save As |Worksheet "|

[] Proceed to summary.

| Help | | Mext = Cancel

Figure 10-5. The first screen of the SQL Developer Database Export tool

This tool is very similar to the APEX wizard, but it gives you more control over the format and contents of
the output, including whether to include schema names, storage clauses, grants, and so on. Another benefit of
SQL Developer is the ability to export the data that exists in the tables. This comes in very handy for seed data that is
needed for the system to function properly.

Whether you choose to use the APEX-based tool or SQL Developer, generating the object-creation scripts for a
new system is straightforward.

Existing Applications

For applications that have already been released into a production environment, the process can be much more
complex. You need to take into account the version that is in production and how the underlying database structure
may differ from the version you've created in development and are ready to deploy.

Luckily there are tools available to help identify the differences between two schemas. These tools can also
generate the necessary DDL scripts to implement the differences.

However, the unfortunate truth is, although the APEX SQL Workshop utilities do include a schema-compare
tool, it has some severe limitations. For one, both schemas that are being compared must be available from the same
workspace. This isn’t possible if your production schema exists on a separate server, as it often does. The second
limitation is that the APEX-based comparison tool identifies the objects that are different, but it doesn’t say how
they're different, nor does it generate the DDL that would be required to synch up the schemas.

267

CHAPTER 10 APPLICATION BUNDLING AND DEPLOYMENT

For this type of functionality, you have to rely on external programs or scripts. The following list mentions a
number of options, all of which can generate the scripts required to synchronize the production environment’s
database objects structure with the changes you may have introduced in development:

e SQL Developer: Oracle’s own product can run a full schema comparison between two separate
schemas on separate servers and generate a script that synchronizes one schema with
another. Older versions of this tool suffered from some problems, but as of SQL Developer
version 3.2 the comparison engine has been significantly upgraded and the generated scripts
are solid.

e Oracle Enterprise Manager: If you have the Change Management Pack and Oracle Enterprise
Manager (OEM), then you can compare schemas and generate a synchronization script.
However, developers are very rarely given access to OEM because it’s more of a database
administration tool and would potentially give developers access to several sensitive utilities
they'd rather us not have access to.

e Schema Compare for Oracle: Red Gate Software has taken its extensive experience in
creating tools for the SQL Server market and turned its attention to the Oracle database
market. The result is a tool that allows you to compare, view, and generate synchronization
scripts between two Oracle schemas. This is probably the best third-party tool on the market,
but the one downside is that it only runs on Windows.

e TOAD for Oracle: TOAD(which originally stood for Tool for Oracle Application Development)
is a tool written and distributed by Dell’s software division (formally Quest Software).
Although it can do a lot more, the schema-comparison tool that’s available as part of the DB
Admin module is quite sophisticated and will generate very clean and accurate scripts.

Whichever tool you use, the output is a script that, when run against the production environment, executes
the required DDL to alter the underlying database objects and bring them in line with what was created in your
development environment.

However, none of these tools take into account the data that may reside in the tables that are being altered.
Be very careful before you implement any of the generated upgrade scripts, understand what they may do to the
underlying data, and mitigate any risks of data loss or corruption.

This subject is huge and is beyond the scope of this book. There is no automated solution to the problem of data
migration between versions. More often than not, it boils down to handwritten scripts and heavy testing.

APEX-Based Files

APEX provides the ability for developers to upload static files into the APEX metadata repository as part of an
application’s shared components. Figure 10-6 shows the Files section of the shared components page. The three types
of files that are supported are CSS, images, and static files. Let’s talk about each of these file types.

268

CHAPTER 10 * APPLICATION BUNDLING AND DEPLOYMENT

Files
p—— Cascading Style Sheets
| [@] Images
._‘_,_,_,—-—'—J
Static Files

Figure 10-6. The Files section of an application’s shared components

Cascading Style Sheets provide a way to manage and control the look and feel of a web page without having
to change its structure. Used properly, a CSS file separates the definition of a web page’s visual attributes such as
color, margins, and fonts from the structure of the HTML document. APEX includes numerous themes that contain
templates that reference their own CSS. If you decide to create your own theme or templates, you may want to
implement your own look and feel using CSS.

The Cascading Style Sheets area of the shared components is where you upload the CSS files you wish to use with
your application. Any file uploaded to the CSS area is available to any application in the workspace.

Application Express images are divided into two classifications: workspace images and application images.
Workspace images are available to all applications in the workspace into which they’re uploaded. Application images
are available only to the application to which they’re assigned when uploaded.

Images that are uploaded as shared components will likely be ones that you reference throughout your
application. They may represent portions of your theme, such as images for tabs or buttons; or they may represent
icons that you use to show status or that, when clicked, allow end users to edit rows of data.

One key differentiation to make is that the images uploaded to this area should not be directly related to
the application’s data. Things such as product images, images of employees, and the like should be stored in the
application’s “parse as” schema alongside the data to which the image is related.

Static files are used for pretty much anything else. For instance, you may have a user’s guide associated with your
application and want to make it available for users to download. You could upload that to the Static Files area and
reference it via a URL in your application. Another use might be for JavaScript files that you want to bundle with your
application. You can reference uploaded JavaScripts either from the page templates in a theme or directly from the
definition of a page.

Even though the APEX-based files are considered shared components, and the images may even be tied to a
specific application, they aren’t included in the application export. You need to export these items separately from
the application. The good news is that the APEX Export Wizard you use to export these files is the same one you use to
export an application. Simply click the Files tab in the Export Wizard (as shown in Figure 10-7), and you're presented
with a dialog that lets you export each of the three file types.

Export Waorkspace Application Websheat | Files Themes Flug-ins Defaults Feedback

Figure 10-7. Selecting the Files tab of the Export Wizard

269

CHAPTER 10 * APPLICATION BUNDLING AND DEPLOYMENT

When you select the Files tab, you see a set of sub-tabs, one for each file type. The File and CSS tabs both
provide the options of exporting individual objects or exporting all objects of the same type into a single export file.
Figure 10-8 shows the export dialog for CSS files.

| Export | Workspace ‘ Application | Websheet | Files | Themes | Plug-ins | Defaults | Feedback |

‘ Reset ‘ Export Style Sheets

| File | css | Image |

Export Cascading Style Sheets

* Style Sheets [All Stylesheets
enkitec.css

File Format | UNIX # |

File Character Set: Unicode UTF-8

Figure 10-8. The export options for CSS files

If you select specific files from the list, only those files are exported. To export all files, select the All Stylesheets
option. Clicking the Export Style Sheets button prompts you to save a file called css.sql to alocal directory. You can
then use this file to migrate the files to a new platform.

The Export Wizard pages for static files and CSS files are identical, but the page for images is a bit different.
Figure 10-9 shows the Export Wizard for images.

| Export | Workspace ‘ Application | Websheet | Files | Themes | Plug-ins | Defaults | Feedback |

‘ Reset ‘ Export Images

| File | css | Image |
Choose Application

* Export Images in Application | 121 Help Desk :

Set Application H Export Workspace Images

Export Settings and Preferences

Export: Application Images
Selected Application: Help Desk
File Format | UNIX + |

File Character Set: Unicode UTF-8

Figure 10-9. The export options for image files

270

CHAPTER 10 * APPLICATION BUNDLING AND DEPLOYMENT

Because images may be uploaded and either tied to a specific application or made available throughout the
workspace, the wizard provides the ability to export both types of images independently.

The Export Images in Application select list allows you to choose which application's images to export. Be sure to
click the Set Application button to submit your choice. To be sure your choice has been submitted, look at the region
at the bottom of the screen, which indicates the export type and the application, if any, that has been selected.

If you want to export workspace-level images, click the Export Workspace Images button. Once you click the
Export Images button at the top of the page, you're prompted to save the file for the image type you chose. The export
file for workspace images is named f0_img.sql, and the export file for a specific application is named using the
application ID in place of the zero (0) in the file name. For instance, images for application 121 are exported to a file
named f121_img.sql.

Note All three file types offer the ability to choose the output file format: DOS or UNIX. This has nothing to do with
the target platform and everything to do with how the export file treats carriage returns and line feeds. Most modern text
editors can easily understand both DOS and UNIX file types, so usually you can ignore this setting.

APEX Application Exports

Like the files in the shared component section, an APEX application export is easy to acquire. The interface includes a
process designed to generate scripts for re-creating APEX applications.

It’s important at this point to know what an application export includes and what it doesn’t. We’ve already
discussed the fact that the underlying database objects aren’t included, and neither is anything that is uploaded to the
Files section of the shared components. But all other shared components are included in the export file.

It’s worth mentioning that all configured and assigned shared components are included in the APEX application
export, whether they're being used by the application or not. For instance, there can only ever be one authentication
scheme current for an APEX application, but more than one authentication scheme may be configured and assigned
to the application. The same is true for user interface themes.

Although this isn’t strictly a problem, it’s good practice to delete any shared components that aren’t being used
by the application so that the size of the application export stays as small and manageable as possible. Most shared
components provide a utilization report so you can see whether they’re being used.

The application export capability is located on the Application Builder main page in the Tasks menu at right on
the page, as shown in Figure 10-10, or on the application’s Edit page. Both options navigate to the same location.

Tasks

Application Builder Defaults
Application Groups
Workspace Themes

Cross Application Reports
Application Express Views
Export &

Figure 10-10. The Export option is located in the Tasks menu at right on the page

271

CHAPTER 10 * APPLICATION BUNDLING AND DEPLOYMENT

When you initiate the wizard, it prompts you for which application to export, as shown in Figure 10-11.

| Export 7i Workspace .:ppﬂalianﬂ‘ Websheet ‘ Files | Themes ‘ Plug-ins ‘ Defaults ‘ Feedback ‘

Reset ‘ Export Application

Choose Application Set Application \

= e ———
Application | 123 Help Desk s

Figure 10-11. Any application in the workspace can be selected for export

Choose the application to export, and click the Export Application button. The next page of the wizard presents a
number of options for the application’s export (see Figure 10-12).

i Export | Workspace 1_Appllratln; | ‘Websheet i Files i Themes Plug-ins ‘ Defaults ‘ Feedback ‘

Reset ‘ Export Application

Choose Application set Application |

*
Application | 123 Help Desk)

Export Application

Selected Application: Help Desk
Page Count: 16
Owner: APRESS
Fle Format [UNIX =
Oumner Override -

Build Status Override | Run and Build Application % |

Debugging | Ne ¢ |

As of minutes ago (~ 5 min delay)

File Character Set: Unicode UTF-8

Export Preferences

Export Supperting Object Definitions | Yes ¢ |
Export Public Interactive Reports [Yes ¢
Export Private Interactive Reports | No ¢

Export Interactive Report Subscriptions | Ne ¢
Export Developer Comments | Yes ¢

Export Translations | No

Figure 10-12. Options for the application export
The Export Application section allows you to dictate how, in more general terms, the application should be
exported. It includes these options:

e File Format: As noted earlier, doesn’t relate to the target platform but instead to how the file is
generated with regard to carriage returns and line feeds.

e Owner Override: Allows you to override the currently assigned “parse as” schema by either
entering or selecting one.

272

CHAPTER 10 * APPLICATION BUNDLING AND DEPLOYMENT

Build Status Override: Lets you select which build status is the default when the application
is imported. The default is Run and Build Application, but you may set the status to Run
Application Only.

Debugging: Dictates whether the application is installed with debugging enabled or disabled
by default. Debugging is useful for applications in development. However, as a best practice,
you should turn off debugging for production applications to prevent users from viewing
things that may only show up while in debug mode.

As Of: Allows you to export the application as it existed a number of minutes ago. For this
feature to work, Flashback Query must be enabled at the database level. The amount of time
you may flash back is controlled by the UNDO_RETENTION parameter at the database level.

Note Although you can select default values for the settings in the Export Application section, it’s important to
understand that they can be overridden when the application is imported. At this point you’re merely setting the defaults
for the import.

In the Export Preferences section, several options allow you to decide what is included in the application export.
The following options are available:

Export Supporting Object Definitions: Dictates whether any supporting objects that have been
uploaded are exported with the application. See the “Supporting Objects” section later in this
chapter for a full description.

Export Public Interactive Reports: Dictates whether report definitions saved by end users and
marked as public are exported as part of the application.

Export Private Interactive Reports: Dictates whether report definitions saved by end users and
marked as private are exported as part of the application.

Export Interactive Report Subscriptions: Dictates whether user subscription information for
interactive reports is exported as part of the application.

Export Developer Comments: Dictates whether any comments developers have entered
against APEX components are exported as part of the application.

Export Translations: Dictates whether translation mapping information is exported as part of
the application. Translation text messages and dynamic translations are always included in
the application export, regardless of the setting chosen here.

Once you've chosen the appropriate settings, click the Export Application button to produce the application
export. You're prompted to save it to your local machine. The export file name consists of the letter ffollowed by the
application ID, with a . sql extension. For example, an application with an ID of 9238 is named 9239.sql.

The downloaded file contains a large script that defines all the contents of the application built in APEX. With
the application pages are the shared components, including authentication schemes, authorization schemes, themes
in the application, Ul settings, reports, and so on. This script can, in turn, be imported into the same workspace, a
different workspace, or even a different server.

273

CHAPTER 10 APPLICATION BUNDLING AND DEPLOYMENT

Supporting Objects

The application export captures the complete definition of your application, including most shared components,
but it doesn’t contain everything you would need to completely reconstitute your application on another server.
However, APEX provides a feature that allows you to bundle the scripts for things such as the underlying database
tables inside the application export. This feature is called Supporting Objects.

The Supporting Objects feature actually gives you a great deal more functionality than that. It provides the ability
to create and control the installation, and upgrade and deinstall anything that can be scripted using SQL.

You reach the Supporting Objects management interface by navigating to the shared components for an
application and selecting the Manage Supporting Objects option from the Tasks menu. Figure 10-13 shows the
Supporting Objects home page.

Supporting Objects m About

Use Supporting Objects to define
database object installation
seripts that are invoked when
importing an application. You can
Check for Objects: No Substitutions: 0 Installation Scripts: 0 also define deinstallation scripts

Use this utility to define the database object definitions, images, and seed data to be included in your application export.

Application: 121: Help Desk.

to drop objects when deleting an
application. Supporting objects
allow you to package both the
Prompt for License: No Include in Export: Yes application and database objects
needed in a single file,

Verify System Privileges: Yes Build Options: 1 Upgrade Scripts: 0

Required Free KB: 100 Validations: 0 Deinstallation Script: Yes

Installation Upgrade Tasks

View Install Summary

@ B Prerequisites
e] ’ =2 Appl on Substitution Strings

& Pre-ins

& Installation S

Supporting Object

Installation

Export Application

Install Supporting Objects
& Messages

Upgrade Supporting Objects

Deinstall Supporting Objects
Deinstallation

& Dein

Figure 10-13. Supporting Objects management home page

The page is broken down into several regions. The summary region at the top shows what is currently defined in
the supporting objects, and the three regions below (Installation, Upgrade and Deinstallation) allow you to edit the
scripts and define the actions that are available during each phase.

Clicking any of the links takes you to a tabbed definition page, as shown in Figure 10-14.

274

CHAPTER 10

Messages | Prerequisites | Substitutions | Build Options | Validations | Install | Upgrade | Deinstall | Export

Prerequisites A~

Required Free Space in KB: | 100

Required System Privileges:
CREATE DATABASE LINK CREATE MATERIALIZED VIEW & CREATE PROCEDURE

CREATE SEQUENCE CREATE SYNONYM & CREATE TABLE
@ CREATE TRIGGER CREATE TYPE & CREATE VIEW
Objects that will be Installed S

To avoid errors that may occur during the execution of the installation scripts due to pre-existing objects, we will check for the existence of objects
with the names below. If any of them exist, the install will not proceed and the user will be provided the details.

Object Names
~ | add || Remove

Figure 10-14. Supporting Objects tabbed definition screen

APPLICATION BUNDLING AND DEPLOYMENT

Tasks

Install Supporting Objects

Upgrade Supporting Objects
Deinstall Application

Edit Application

Working through the tabs on this page lets you define the actions that are taken and any scripts that should be
run during each of the three phases. Although we won’t show a picture of the contents of each tab here, in this section
we walk through each of them and discuss their contents and purpose, saving the Messages tab for last.

Prerequisites

This section defines what built-in checks should be run to ensure that the database schema into which the application
is being installed has the appropriate privileges. You can provide a minimum amount of space that is required for the
application to work correctly. At installation time, the “parse as” schema’s default tablespace is checked to be sure

the appropriate amount of space is available. You can also check to make sure the schema has any of the following

specific privileges:

CREATE DATABASE LINK
CREATE MATERIALIZED VIEW
CREATE PROCEDURE

CREATE SEQUENCE

CREATE SYNONYM

CREATE TABLE

CREATE TRIGGER

CREATE TYPE

CREATE VIEW

275

CHAPTER 10 APPLICATION BUNDLING AND DEPLOYMENT

The bottom region of the page allows you to list all objects that will be created by the supporting object-installation
scripts. At installation time, if any of the listed objects already exist, the install won’t proceed, because there could
be a clash. The user installing the application is given the details of which objects are found to already exist.

This section may seem a bit limiting in its scope, but the Validation section, discussed later, allows for more
free-form prerequisite checks.

Substitutions

This section provides the ability to allow the installing user to define the value for application-level substitution
strings at install time. Although substitution strings are meant to be used like static variables, you may not always
know what the value of these strings should be prior to installation. From this interface you can choose which
substitution variables you want to let the installing user define, and what the prompt for each variable should be.

Substitution variables aren’t used very often, so this feature is also unlikely to be used. However, it’s good to
know that it’s there if you need it.

Build Options

We spoke about build options and the fact that they can be used to exclude or hide assigned functionality.
This section allows you to select whether build options you've defined are available to the installing user. By selecting
a build option, the user will be prompted whether they wish to include or exclude the functionality associated with
the build option.

Most of the time, when moving applications to production, you want to exclude all build options.

Validations

This section lets you define any number of pre-installation validations to be run. These validations are similar to
normal page validation and allow full control over whether the application installation can proceed. You may have as
many validations as you wish, and the validations may be conditional as well.

If any validation fails, the installation is halted, and the user is presented with the error message(s) defined in the
failing validation(s).

Install

This is the core of supporting objects and where you define what scripts to run and in what order to install all the
objects your applications need to work properly. Here you can create and manage scripts that install database objects,
workspace or application images, CSS files, static files, and so on. Depending on the type of scripts you're including,
you may be able to create them in different ways.

When it comes to scripts that create the underlying database objects, you've probably used a tool such as SQL
Developer or the SQL Workshop’s Generate DDL tool to generate a script to a file.

You can choose to either upload a pre-created script or create the script from scratch. You do so via the Create
Script Wizard shown in Figure 10-15.

276

CHAPTER 10 * APPLICATION BUNDLING AND DEPLOYMENT

Cancel Next >

Script Type: Install

(®) Create from Scratch _) Greate from File

4

- |

Figure 10-15. Create Script Wizard

Choosing Create from Scratch presents you with a script-editing screen where you can type in the script steps
from scratch or copy and paste the script from a text editor. However, if you already have the script stored in a file,
you may want to use the Create from File option, which allows you to upload the script from your local computer.

Once a script has been created, you're allowed to alter the script’s name, its sequence of execution, and the
condition under which the script will be run.

Whether you have several scripts, one for each object or object type, or one large script that creates all the
required objects is completely up to you. Just make sure that if you choose to have several scripts, you test their
execution in the order they're listed in the interface to make sure any dependencies are accounted for.

You can also use the Install section to house scripts that install the file shared components, such as images, CSS,
and static files. Again, if you've already exported these files to your filesystem, you can upload them just as you would
the database object scripts.

However the Create Script Wizard can generate scripts for any of the file shared components and include them
directly as part of your supporting object-install scripts. By clicking the Create Scripts to Install Files link (shown in
Figure 10-15), you're taken to a wizard that lists all the shared component files available to your application.

Figure 10-16 shows a list of files available to application 121.

appends instructions to the

deinstallation script to

Check All Uncheck All

File Type File Name

CSS (Workspace) enkitec.css

Image (Application) Earth (Americas).gif
Image (Workspace) twitter32.png
Static File (Application) 5.5

Figure 10-16. Supporting object files available to application 121

277

CHAPTER 10 APPLICATION BUNDLING AND DEPLOYMENT

From here you can choose which files you want to include in your application’s supporting objects install section.
Clicking Create Script generates and includes a script for each individual object. When the wizard is complete, you're
taken back to the Install tab and can see the scripts that were generated (see Figure 10-17).

IMassages Prereguisites Substitutions Build Options Validations Install Upgrade Deinstall Export

Q- Go Actions v

Name Sequence(a] Script

/| enkiteccss 10 begin wwv_flow_api.g_varchar2_table := wwv_flow_api.empty varchar2_table; wwv_flow_api.g_varchar2_table(1
E— '2F2A20536974652057696465202A2 FOADA4DE66FEET 42 D666 16365207 BOADIEEEFEET42D66616D696CT!

y 50 begin wwv_flow_api.g_varchar2_table := wwv_flow_api.empty_varchar2_table; wwv_flow_api.g_varcharZ_table(1
'47494638396130003000FTFFO000000027361404202A7CE556031B2389876A665639B6B6B51518148F78

T begin wwv_flow_api.g_varchar2_table := wwv_flow_api.empty_varchar2_table; wwv_flow_api.g_varchar2_table(1

¢ | twitteraz.png 0 '89504E470D0A1A0ADD0000004948445200000020000000200806000000737ATAF4000000047342495408
& | sis a0 begin wwv_flow_api.g_varchar2_table := wwv_flow_api.empty_varchar2_table; wwv_flow_api.g_varcharZ_table(1

PR 2F2F 2R 2F2

Figure 10-17. The Install tab after generating scripts for the file shared components

Note Once the script for a file shared component has been generated, there is no tieback to the original file object.
If you change an image file or the contents of a CSS or JavaScript file, you need to regenerate the script for the shared
component. When regenerating a script, be careful to delete the original, because it won’t be overwritten; instead a new
script is created and added to the Install script list.

Upgrade

The Upgrade tab is very similar to the Install tab, allowing you to create or generate scripts. But in this case, the scripts
are used to upgrade an existing application’s supporting objects if the installer finds that the application is already
installed in the workspace.

The installer does this by letting you write a query to check for the preexistence of supporting objects in the
schema. If the query returns one or more rows, then the upgrade script set is run in place of the install script set.

Deinstall

This section allows you to define a single script that drops the database objects and static files created by the install
or upgrade scripts. When you generate install scripts for supporting object files, API calls to deinstall these files are
added to the deinstall script automatically. However, you need to add the necessary code to drop the appropriate
database objects manually.

278

Export

CHAPTER 10 * APPLICATION BUNDLING AND DEPLOYMENT

The Export tab simply lets you set the default for whether the supporting objects are included when you export the
application. This option is also available on the Supporting Objects main screen.

Messages

The Messages page gives you control over the verbiage presented to the installing user during the install of the
application. The section text that you can edit is as follows:

Welcome: After successfully importing and installing an application definition, the installation
wizard prompts the user to install supporting objects for the application. This message
introduces the application and describes the actions of the installation scripts.

License: If the use of this application requires the user to accept a license, enter the license text
here. The user is prompted to accept the message before installing supporting objects. If there
is no text for the license, this step is skipped in the install wizard.

Application Substitutions: Introduces the application-substitution prompts. It should
probably state that these values aren’t easily changed and to be sure of their values before
entering them. If there are no application-substitution variables to be entered, this message
doesn’t display.

Build Options: Introduces the build options that may be available for the user to select. If no
build options are available, the step is skipped and the message doesn'’t display.

Validations: Introduces the validations that will be performed prior to installing the
supporting objects. If there are no validations, the step is skipped and the message
doesn’t display.

Confirmation: Displayed just prior to the installation scripts being run and the configuration
options being applied.

Post Installation Success: Shown after the application’s supporting objects have been installed
successfully with no errors.

Post Installation Failure: Shown after the application’s supporting object scripts have run, but
only if errors were generated. The user can view the errors that occurred.

Upgrade Welcome Message: Provides a message informing the user that the installer has
detected preexisting supporting objects and that the Upgrade Wizard will now be run.

Upgrade Confirmation Message: Presents a message prior to running the upgrade scripts to
allow the user to choose whether to continue.

Upgrade Success Message: Shown after the supporting objects upgrade script is run
successfully with no errors.

Upgrade Failure Message: Shown after the supporting objects upgrade script is run, but only if
errors were generated. The user can view errors that occurred.

Deinstallation Message: Presented just prior to running the supporting objects
deinstallation script.

Post-Deinstall message: Presented just after running the supporting objects
deinstallation script.

279

CHAPTER 10 APPLICATION BUNDLING AND DEPLOYMENT

Note Because all script types are standard SQL and PL/SQL, you have the option of writing quite complex logic that
can decide within the script what steps to take. However, there is no interactivity or shared session state between the
individual scripts, so you can’t decide in the first script whether to run the second or third script. Every script in the set
will be run regardless of the result of the previous scripts. Errors are shown only after all scripts have been run.

The process of building a packaged application that includes supporting objects can be daunting. The good news
is that, in a standard IT environment, the scripts to migrate database objects are rarely processed using supporting
objects. Although supporting objects are very useful, they tend to lend themselves to situations, such as shrink-
wrapped software, where applications are sent to remote sites where there is little or no direct interaction with the
installing user.

For applications that are being developed and deployed in a single organization, rules and guidelines are
probably in place for migrating applications to production. Make sure you check with your organization and adhere to
those standards.

Importing

APEX applications can be imported by providing the application export script. You can import into a different
workspace or into the original workspace. The Application Import Wizard is available from the Application Builder
home page. Figure 10-18 shows the initial page of the wizard.

Select the file you wish to import to the export repository. Once imported, you can install vour file.

If the imported file is a d ication export, the installation wizard will allow you to run the packaged installation scripts after installing the application definition.
*)
Import file Browse...

*FleType: (@) Database Application, Page or Gompanent Export
Websheet Application Export
Plug-in
CSS Export
Image Export
File Expaort
Theme Export
User Interface Defaults
Team Development Feedback

File Character Set Unicode UTF-8

Tasks

+ Manage Export Repository
+ Export

+ Component Export

Figure 10-18. Import file identified as a database application

Asyou can see, the wizard allows you to import many different types of APEX export scripts. Make sure you
choose the right type for the file you're trying to import. When importing an application export script, click Browse to
choose the application export file, and be sure to choose Database Application, Page, or Component Export.

280

CHAPTER 10 * APPLICATION BUNDLING AND DEPLOYMENT

The page in Figure 10-19 indicates that the application export file has been uploaded from your computer to the
server. Remember that the application file is a script. Although it has been uploaded at this stage, it hasn’t yet been
run; therefore the application isn’t installed.

.
(<o)

The export file has been imported successfully.
If you wish to Install now, click Next >.

You can also install this file at a later time by navigating to the Export Repository.

Current Application
Application: 123

Tasks
+ Manage Export Repository
= Preview File

Figure 10-19. File upload success. Continue to install the application

Clicking the Next button initiates the steps to install the application into the current workspace. APEX prompts
for a few key pieces of information, as shown in Figure 10-20.

(‘ Cancel ‘ Install Application

When you install an application having the same ID as an existing application in the current workspace, the existing application is deleted and then replaced by the new
application. If you attempt to install an application having the same ID as an existing application in a different workspace, a benign error message displays. If you are
importing a packaged Application Express application, the installation wizard will allow you to Install supporting objects.

Current Workspace: APRESS
Export File Workspace: APRESS
Export File Workspace ID: 2642313158820002
Export File Application ID: 123
Export File Version: 2012.01.01
Export File Parsing Schema: APRESS
Application Origin: This application was exported from the current workspace.
* Parsing Schema | APRESS B
* Build Status Run and Build Application

* Install As Application: (=) Auto Assign New Application ID
(_) Reuse Application ID 123 From Export File
(_) Change Application ID

> Tasks

Figure 10-20. Installing the application into the workspace

At this point, choose the parsing schema and the build status, and decide how to treat the application ID.
The parsing schema can be any of the database schemas associated with the workspace. The build status lets the
application be set to a runtime mode, which is useful for production environments; the default allows run and build
(or edit) mode. The final option pertains to the application ID values; the default option is to assign a new application ID
when installed, which lets the same application exist in the workspace multiple times—each time under a different ID.

281

CHAPTER 10 APPLICATION BUNDLING AND DEPLOYMENT

If you choose to reuse the application ID from the export file or change the application ID to one of your
choosing, APEX checks to see if an application with that ID already exists. If an application with that ID does exist
in the same workspace, you're prompted as to whether you wish to replace the application currently assigned to
that application ID with the one you're importing. If an application with the selected ID exists but is in a different
workspace, you're prohibited from using that application ID. This protects you from accidentally overwriting
applications in other workspaces.

If the application has supporting objects, the next screen asks whether you want to install those supporting
objects. It also gives you the option of previewing the supporting object scripts that will be run.

To continue installing the supporting objects, select the Yes radio button and click the Next button. The wizard then
walks through all the steps that were set up when you created the supporting objects. It performs any prerequisite
checks and validations and decides whether to run the install or upgrade scripts. The user is presented with any
choices and options related to substitution strings and build options.

Finally, you're asked to confirm the installation (or upgrade) of the supporting objects. Continuing with the
wizard runs the appropriate scripts. If there were errors during the scripts, the errors are presented to you to view.
If there weren’t any errors, you're given the opportunity to see the install summary or edit or run the application.
Figure 10-21 shows the final page of a successful import.

Install Summary Edit Application Run Application

@

Your application's supporting objects have been installed.

d in the export repository. Unless you plan to install again, you should remove it

Figure 10-21. Successful installation of an application

Summary

Asyou've seen, APEX has a robust, built-in migration capability. The export and import tools are easy to use and
very functional. The additional ability to construct installation scripts to manage the database side of an application
goes a long way toward being able to deploy self-standing applications in one process. But remember that some
files may need to be migrated manually because they don’t fall into the realm of what APEX can handle via
supporting objects.

282

CHAPTER 11

Understanding Websheets

Websheets were a new marquee feature of APEX 4.0 and deliver end-user control over both web content and
structure. In the early days of APEX, when it was still known as Project Marvel and later HTML DB, some people
thought that end users could use APEX to develop their own applications. Although this was true for simple
spreadsheet-like applications, most end users weren’t comfortable building web applications that needed an
underlying normalized database together with snippets of SQL, PL/SQL, and JavaScript. Websheets now fulfill the
early promise of end-user development for web content like blogs, wikis, and very simple business applications.
Websheets give end users this power without forcing them to learn how to normalize a database and write code.
Everything in websheets, except a few optional advanced features, is declarative.

Websheets have been designed so that they're easy to use. However, like all computer tools, there is an associated
learning curve. That’s the bad news. The good news is that the learning curve is very shallow. The tool relies heavily on
wizards that lead you intuitively through the content-creation processes.

This chapter outlines the underlying structure of websheets, describes the navigation style, and highlights some
of the handy features that will make you productive. This chapter concentrates on what websheets can do; Chapter 12
concentrates on how websheets are built by leading you through some step-by-step scenarios. After reading this
chapter and working through the next chapter, you can quickly create professional looking web content.

Note As you read this chapter, you may find yourself wondering how to create some of what is discussed. Not to
worry. The examples in the next chapter provide an in-depth look at the major tasks involved in creating a websheet. This
chapter provides the background that will enable you to follow along with and fully understand the upcoming examples.

Websheet Structure

The fundamental building blocks of a websheet (see Figure 11-1) are simple to envision. A websheet is a
container for web pages. The web pages, in turn, are containers for sections. A section, which is similar to a
region in an APEX database applic